
1. FlexGanttFX Developer Manual . 2
1.1 1. Installation . 2
1.2 2. Tutorial . 3
1.3 3. Controls . 11

1.3.1 3.1 GanttChart . 11
1.3.1.1 3.1.1 Model . 12
1.3.1.2 3.1.2 Detail Node . 13
1.3.1.3 3.1.3 Display Mode . 13
1.3.1.4 3.1.4 Graphics Header . 15
1.3.1.5 3.1.5 Row Header . 15
1.3.1.6 3.1.6 Property Sheet . 17
1.3.1.7 3.1.7 Other Features . 18

1.3.2 3.2 MultiGanttChartContainer . 20
1.3.3 3.3 DualGanttChartContainer . 21
1.3.4 3.4 QuadGanttChartContainer . 21
1.3.5 3.5 GraphicsBase . 22

1.3.5.1 3.4.1 System Layers . 24
1.3.5.2 3.4.2 Drag & Drop . 25
1.3.5.3 3.4.3 Event Handling . 27
1.3.5.4 3.4.4 Activity Editing . 31
1.3.5.5 3.4.5 Row Editing . 35
1.3.5.6 3.4.6 Activity Rendering . 39
1.3.5.7 3.4.7 Row Rendering . 42
1.3.5.8 3.4.8 Context Menu . 43

1.3.6 3.6 Timeline . 44
1.3.6.1 3.5.1 Timeline Model . 46
1.3.6.2 3.5.2 Time Tracker . 47

1.3.7 3.7 Dateline . 51
1.3.7.1 3.6.1 Dateline Model . 52

1.3.8 3.8 Eventline . 58
1.4 4. Model . 59

1.4.1 4.1 Activity . 59
1.4.1.1 4.1.1 ChartActivity . 60
1.4.1.2 4.1.2 CompletableActivity . 61
1.4.1.3 4.1.3 HighLowChartActivity . 61

1.4.2 4.2 ActivityRef . 61
1.4.3 4.3 ActivityLink . 61
1.4.4 4.4 ActivityRepository . 61

1.4.4.1 4.4.1 IntervalTreeActivityRepository . 62
1.4.4.2 4.4.2 ListActivityRepository . 63

1.4.5 4.5 Row . 63
1.4.6 4.6 Layer . 65
1.4.7 4.7 LinesManager . 65
1.4.8 4.8 Layout . 69

1.4.8.1 4.8.1 Gantt Layout . 69
1.4.8.2 4.8.2 Agenda Layout . 70
1.4.8.3 4.8.3 Chart Layout . 71

1.4.9 4.9 Calendar . 72
1.5 5. Styling (CSS) . 76

1.5.1 dateline.css . 76
1.5.2 eventline.css . 80
1.5.3 gantt.css . 82
1.5.4 graphics.css . 88
1.5.5 timeline.css . 93

1.6 6. Logging . 93

FlexGanttFX Developer Manual
This confluence space is the home of the documentation.Please feel free to comment on anything that you think might need FlexGanttFX
improving.

Search this documentation

1. Installation

Step 1: Download and Install Java 8
Step 2. Download the FlexGanttFX distribution
Step 3. Unpack the distribution
Step 4. Add JAR files to classpath
Step 5. Create application class

Step 1: Download and Install Java 8

Download and run the installer. Java 8 includes JavaFX 8.JDK 8

Step 2. Download the FlexGanttFX distribution

Go to the downloads section of and download the latest release of FlexGanttFX. The download file will be a ZIP archivehttp://www.dlsc.com
containing the required JAR files, demos, tutorials, API documentation, etc...

Step 3. Unpack the distribution

Unzip the distribution to your local file system. Once upacked you will see the following content:

http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html
http://www.dlsc.com/

The distribution contains the following subfolders:

css - copies of the stylesheets used by FlexGanttFX (the originals are included in the JAR file)
demos - several runnable jar files, simply double click to run or call "java -jar xxx-demo.jar" (make sure to use Java 8u60+)
docs - the API documentation of FlexGanttFX
ext - third-party JAR files required for running FlexGanttFX
legal - the license agreements as PDF files
lib - the FlexGanttFX libraries
tutorial - files to get you started

Step 4. Add JAR files to classpath

Assuming that you downloaded release 1.6.0 then add the following files (located in the distribution's folder) to your classpath.lib

flexganttfx-core-1.6.0.jar - contains various utility classes and the licensing support
flexganttfx-model-1.6.0.jar - all classes related to the data model (activities, rows, repositories)
flexganttfx-view-1.6.0.jar - the view classes, such as the actual Gantt Chart control
flexganttfx-extras-1.6.0.jar - additional classes such as a toolbar and a statusbar

Add the files located in the folder to your classpath.ext

controlsfx.jar - the distribution of the projectControlsFX
license4j.jar - code for supporting the licensing concepts

Step 5. Create application class

The following listing shows the most basic setup that is required to launch a Gantt chart user interface.

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.stage.Stage;

import com.flexganttfx.view.GanttChart;

public class MyFirstGanttChart extends Application {

 @Override
 public void start(Stage stage) throws Exception {

 // <- Our Gantt chart
 GanttChart<?> gantt = new GanttChart<>();

 Scene scene = new Scene(gantt);

 stage.setScene(scene);
 stage.centerOnScreen();
 stage.sizeToScene();
 stage.show();
 }

 public static void main(String[] args) {
 Application.launch(args);
 }
}

2. Tutorial

http://controlsfx.org

In this tutorial we are creating a very simple solution for displaying the schedule of an aircraft fleet.To install please follow theFlexGanttFX
instructions found in .1. Installation

View Model

Let's start by creating a view model for the Gantt chart. Our objects are , , , and . Instances of will be shown as aFleet Aircraft Crew Flight Flight
horizontal bar in the graphics area of the Gantt chart while the first three will be displayed in the rows of the tree table area. , andFleet, Aircraft C

 share a common superclass called , an extension of .rew ModelObject Row

The class is being used to define a hierarchical data structure by the help of three type arguments: the first one specifies the type of theRow
parent row, the second one the type of the children rows, and the third one the type of activities that will be shown on the right-hand side of the
Gantt chart.

Model Object

class ModelObject<
 P extends Row<?,?,?>, // Type of parent row
 C extends Row<?,?,?>, // Type of child rows
 A extends Activity> extends Row<P, C, A> { }

We can now pass as a type argument when creating an instance of a control. This informs the control that all rows willModelObject GanttChart
have this common supertype.

Typed Gantt Chart

GanttChart<ModelObject<?,?,?> gantt = new GanttChart<>()

The model class can be implemented as shown in the following code fragment, assuming that a fleet consists of several aircrafts, eachAircraft
aircraft having a crew, and flights being assigned to aircrafts and crews.

Row Type: Aircraft

public class Aircraft extends ModelObject<Fleet, Crew, Flight> {
 public Aircraft(String name) {
 super(name);
 }
}

The class extends and might look like this:Flight MutableActivityBase

Activity Type: Flight

public class Flight extends MutableActivityBase<FlightData> {
 public Flight(FlightData data) {
 super(data.getFlightName()); // the activity name
 setStartTime(data.getFlightDepartureTime()); // start / end times as
java.time.Instant
 setEndTime(data.getFlightArrivalTime());
 setUserObject(data); // a user object according to the type argument
above
 }
}

This class definies a flight as a activity, which means that the flight can be edited by the user. We can also see that the activity gets itsmutable
information from a domain object of type . Supporting a user object allows us to create a bridge between the model and the FlightData domain vi

model. All that is left to do now is to add the activities / the flights to the rows / the aircrafts. For this we can simply call the method ew Row.addA
ctivity(Layer, Activity).

Layers

Layers are used to create groups of activities so that they can be shown / hidden together. In our example we want to group flights based on their
service type (cargo, charter, training, etc...).

Layers

Layer cargoLayer = new Layer("Cargo");
Layer trainingLayer = new Layer("Training");
Layer charterLayer = new Layer("Charter");
gantt.getLayers().addAll(cargoLayer, trainingLayer, charterLayer); // make
layers known to Gantt

Now the Gantt chart knows which layers it needs to rendere and we can create the link between the layers and the activities. This is done when
we add the activities to the rows (here: add flights to aircrafts).

Activity Repositories
Rows do not store activities themselves, instead they are delegating all activity-related functionality to a repository of type ActivityRepo

. The default repository is of type . Applications can implement their own repositories and register themsitory IntervalTreeRepository
by calling .Row.setRepository()

Adding Activities / Flights

Flight flight1 = new Flight(); // a cargo flight
Flight flight2 = new Flight(); // a training flight
Flight flight3 = new Flight(); // a charter flight

aircraft1.addActivity(cargoLayer, flight1);
aircraft1.addActivity(trainingLayer, flight2);
aircraft2.addActivity(charterLayer, flight3);

Intermediate Result

In the following code sample we are combining all of the steps from above.

Aircraft Gantt Chart

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.stage.Stage;

import com.flexganttfx.model.Activity;
import com.flexganttfx.model.Layer;
import com.flexganttfx.model.Row;
import com.flexganttfx.model.activity.MutableActivityBase;
import com.flexganttfx.view.GanttChart;

public class MyFirstGanttChart extends Application {

 /*
 * Common superclass of Fleet, Aircraft, and Crew.
 */
 class ModelObject<
 P extends Row<?,?,?>, // Type of parent row
 C extends Row<?,?,?>, // Type of child rows
 A extends Activity> extends Row<P, C, A> { }

 class Fleet extends ModelObject<Row<?,?,?>, Aircraft, Activity> { }

 class Aircraft extends ModelObject<Fleet, Crew, Flight> { }

 class Flight extends MutableActivityBase<Object> { }

 @Override
 public void start(Stage stage) throws Exception {

 // Our root object.
 Fleet fleet = new Fleet();
 fleet.setExpanded(true);

 // Create the control.
 GanttChart<ModelObject<?,?,?>> gantt = new GanttChart<>(fleet);

 // Layers based on service type.
 Layer cargoLayer = new Layer("Cargo");
 Layer trainingLayer = new Layer("Training");
 Layer charterLayer = new Layer("Charter");
 gantt.getLayers().addAll(cargoLayer, trainingLayer, charterLayer);

 // Create the aircrafts.
 Aircraft aircraft1 = new Aircraft();
 Aircraft aircraft2 = new Aircraft();

 // Add the aircrafts to the fleet.
 fleet.getChildren().addAll(aircraft1, aircraft2);

 // Create the flights
 Flight flight1 = new Flight(); // a cargo flight
 Flight flight2 = new Flight(); // a training flight
 Flight flight3 = new Flight(); // a charter flight

 aircraft1.addActivity(cargoLayer, flight1);
 aircraft1.addActivity(trainingLayer, flight2);
 aircraft2.addActivity(charterLayer, flight3);

 Scene scene = new Scene(gantt);

 stage.setTitle("Fleet Schedule");
 stage.setScene(scene);
 stage.centerOnScreen();
 stage.sizeToScene();
 stage.show();
 }

 public static void main(String[] args) {

 Application.launch(args);
 }
}

The image below shows what we will see when we run this code.

Activity Renderers

This result is not bad for just a few lines of code, however the rendering of the flights is not attractive at all. We can customize their apperance by
registering a different for the activity type . This is done by calling the method whActivityRenderer Flight GraphicsBase.setActivityRenderer()
ere the graphics view is the control on the right-hand side of the Gantt chart. It is responsible for rendering all activities. We can add the following
lines to our example from above.

Registering an Activity Renderer

GraphicsView <ModelObject<?, ?, ?>> graphics = gantt.getGraphics();
graphics.setActivityRenderer(
 Flight.class,
 GanttLayout.class,
 new ActivityBarRenderer<>(graphics, "FlightRenderer"));

This replaces the default activity renderer with a renderer that draws a fixed-height bar. Interesting about this code is that we are not only passing
the activity type and the renderer instance but also a layout type. We don't want to spend too much time on layouts in the context of this quick
start guide but let's just say that is capable of displaying activities in several different ways (as time bars, as chart entries, as FlexGanttFX
agenda entries).

Our example now looks like this:

We can now add a and a to the example. This allows us to perform actions on the chart and also toGanttChartToolBar GanttChartStatusBar
verify that the layers have been added properly. The following lines of code are needed for this.

Status- and Toolbar

BorderPane borderPane = new BorderPane();
borderPane.setTop(new GanttChartToolBar(gantt));
borderPane.setCenter(gantt);
borderPane.setBottom(new GanttChartStatusBar(gantt));
Scene scene = new Scene(borderPane);

Our example will now look like this after clicking on the layers button in the toolbar.

Listening to Change

Now that we have visualized our data we obviously want to interact with it and we want to be informed about the changes that we make. Our
activities are, by default, editable. This means we can drag them horizontally or vertically. To receive events we only need to register an ActivityE

handler with the graphics view control by calling vent GraphicsBase.setOnActivityChanged().

Receiving Activity Events

graphics.setOnActivityChanged(evt -> System.out.println(evt));

When we run our application now we will see the following output in the console.

event type: DRAG_STARTED, time interval: 2014-04-17T21:45:00Z -
2014-04-22T21:30:00Z,
 value (chart value / percentage complete): 0.0,
 activity "null from 2014-04-18T12:15:00Z until 2014-04-23T12:00:00Z,
 user object = null",
 row = "Default",
 layer = "Training"

event type: DRAG_ONGOING, time interval: 2014-04-17T21:45:00Z -
2014-04-22T21:30:00Z,
 value (chart value / percentage complete): 0.0,
 activity "null from 2014-04-18T12:15:00Z until 2014-04-23T12:00:00Z,
 user object = null",
 row = "Default",
 layer = "Training"

event type: DRAG_FINISHED, time interval: 2014-04-17T21:45:00Z -
2014-04-22T21:30:00Z,
 value (chart value / percentage complete): 0.0,
 activity "null from 2014-04-18T03:00:00Z until 2014-04-23T02:45:00Z,
 user object = null",
 row = "Default",
 layer = "Training"

Please notice the three different event types , , and The first one gets fired when theDRAG_STARTED DRAG_ONGOING DRAG_FINISHED
user initiates a drag, the second while while the drag is still in progress, and the third one when the drag has finished. This pattern can be
observed in JavaFX itself and it was implemented throughout as well. Make sure to take a look at the various event types defined in FlexGanttFX
the class to find out how much information you can receive when the user performs editing operations.ActivityEvent

3. Controls

FlexGanttFX ships with several custom JavaFX 8 controls:

GanttChart
MultiGanttChartContainer
DualGanttChartContainer
GraphicsBase

ListViewGraphics
VBoxGraphics
SplitPaneGraphics
SingleRowGraphics

Timeline
Dateline
Eventline

3.1 GanttChart

Introduction
Structure
Master / Detail Panes
Standalone vs. Multi- / DualGanttChart

Introduction
A generic JavaFX control to visualize any kind of scheduling data along a timeline. The model data needed by the control consists of rows with
activities, links between activities, and layers to group activities together.

Structure
The control consists of several children controls:

TreeTableView: shown on the left-hand side to display a hierarchical structure of rows
GraphicsBase: shown on the right-hand side to display a graphical representation of the model data
Timeline: shown above the graphics view. The timeline itself consists of two child controls.
Dateline: displays days, weeks, months, years, etc...
Eventline: displays various time markers

The screenshot belows shows the initial appearance of an empty Gantt chart control.

Master / Detail Panes

The Gantt chart uses two MasterDetailPane instances from for the high-level layout. The primaryControlsFX master detail pane displays the tree
table as its detail node and the secondary master detail pane initially displays a property sheet as its detail node. The property sheet is used at
development time and can be replaced with any node by calling setDetail(Node). The property sheet displays a lot of properties that are used by
the controls, the renderers, the system layers to fine-tune the appearance of the control. Many of them can be changed at runtime.

Standalone vs. Multi- / DualGanttChart

A Gantt chart can be used standalone or inside a or . When used in one of these containersMultiGanttChartContainer DualGanttChartContainer
the position of the Gantt chart becomes important. The control can be the first chart, the last chart, the only chart, or a chart somewhere in the
middle. A "first" or "only" chart always displays a timeline. A "middle" or "last" displays a special header (see ()). ThesetGraphicsHeader
containers are also the reason why the control distinguishes between a timeline () and a master timeline ().getTimeline() getMasterTimeline()
The master timeline is the one shown by the "first" chart, while the regular timeline is the one that belongs directly to this instance.

3.1.1 Model

The control itself doesn't really have any requirements for a model. It is simply providing convenience methods for the underlyingGantt chart
controls (tree table view,). The following table lists the relevant methods:graphics view

Method Description

void setRoot(R row);

R getRoot();

Sets / gets the root node for the underlying tree table view control.

ObservableList<Layer> getLayers(); The list of layers that will be displayed by the graphics view.

ObservableList<ActivityLink<?>> getLinks(); The list of links that will be displayed by the graphics view.

http://controlsfx.org
http://multigantt

ObservableList<Calendar<?>> getCalendars(); The list of calendars that will be displayed by the graphics view.

3.1.2 Detail Node

The Gantt chart control is using two nested (from). The first one contains the tree table view as its detail nodemaster / detail panes ControlsFX
and the second master / detail pane as its master node. The second master / detail pane shows the as the master node and a graphics view prop

 as the detail node. The following table lists the related methods:erty sheet

Method Description

setDetail(Node);

getDetail(Node);

Sets / gets the node that is being shown as the detail node of the secondary master detail pane.

getPrimaryMasterDetailPane(); Returns the primary master / detail pane. This pane shows the tree table view as its detail and the
secondary master / detail pane as its master.

getSecondaryMasterDetailPane(); Returns the secondary master / detail pane. This pane shows the graphics view as its master and
an optional node as its detail.

The following image illustrates the concept of two nested master / detail panes.

3.1.3 Display Mode

Introduction

Standard Layout

Table Layout

Graphics Layout

Introduction

The property of the control is used to toggle between three different layouts:displayMode Gantt chart

a layout with the tree table view shown on the left-hand side and the graphics area on the right-hand sidestandard
a layout where the table will fill the entire width of the Gantt chart controltable-only
a layout where the graphics view will fill the entire width of the Gantt chart controlgraphics-only

The display mode can be changed by calling the method.setDisplayMode()

Standard Layout

http://fxexperience.com/controlsfx/features/#masterdetailpane
http://controlsfx.org

Table Layout

Graphics Layout

3.1.4 Graphics Header

The graphics header node is a replacement for the timeline when the control is being used in a multi Gantt chart context, for exampleGantt chart
when used in a or a .DualGanttChartContainer MultiGanttChartContainer

3.1.5 Row Header

This node can be set by calling . The node passed to this method can be anything. The onlyGanttChart.setGraphicsHeader(Node)
important thing to be aware of is that the preferred height of this node has to be set to the same value as the preferred height of the tree
table header.

Introduction
Row Header Type
Row Header Factory

Introduction

The first column in the tree table view is called "row header". This column is provided by the framework and can not be removed. By default it is
used to display row numbers but can be reused for other purposes. The RowHeader class is a subclass of TreeTableColumn with some special
logic to it. It supports row resizing and might call back on a factory to produce its graphic.

Row Header Type

The enumerator defines the different ways the row header can be used.RowHeaderType

Value Description

GRAPIC_NODE Makes the row header cells display a custom node for each row.

LEVEL_NUMBER Makes the row header cells display the level number of the current row (1, 1.1, 1.2, 2, 2.1, 2.2, 2.3, ...).

ROW_NUMBER Makes the row header cells display the number of the current row (1, 2, 3,).

Row Header Factory

If the graphic node header type is chosen then the row header will call back on the row header node factory that is supplied by the GanttChart
class. The following example shows how to register a possible implementation of such a factory.

Row Header Node Factory

ganttChart.setRowHeaderNodeFactory(row -> {
 public Node call(R row) {
 Button delete = new Button("Delete");
 delete.setOnAction(evt -> deleteRow(row));
 return delete;
 }
});

3.1.6 Property Sheet

The default control used for the Gantt chart detail node property is the property sheet from the ControlsFX open source project. It is used to
display the properties of the Gantt chart itself and its subcontrols (timeline, dateline, eventline, graphics). It also shows the properties of all render
ers registered with the controls. The screenshot below shows the property sheet as it presents itself when the detail node of the primary master
detail pane becomes visible. It can be made visible by calling GanttChart.setShowDetail(true).

http://fxexperience.com/controlsfx/features/#propertysheet
http://controlsfx.org

3.1.7 Other Features

Introduction

Fixed cell size

Master Timeline

Tree Table Scrollbar

Timeline Scrollbar

Position

Factory Methods

Introduction

This page describes several of the smaller and normally less important features of the Gantt chart control.

Fixed cell size

The tree table view and the list view of JavaFX both support a property called . It can be used to improve the performance of bothfixedCellSize
controls. This is done by setting it to a value other than -1. A value like that informs the controls that each cell will have the same height, which
allows for faster algorithms to be used when updating the controls. The class also defines this property in order to ensure that the treeGanttChart
table view and the list view used by it use the same cell size. If set the Gantt chart will not use the property of the and will also notheight rows
allow the user to resize the rows.

Master Timeline

The control defines a property called . This property is used when the Gantt chart is being used in a multi GanttGanttChart masterTimeLine

When writing your own renderers you can override the method and add your own items to the list of itemsgetPropertySheetItems()
returned by the superclass.

chart context (e.g. or). In these situations it is the timeline of the top Gantt chart that is theDualGanttChartContainer MultiGanttChartContainer
basis for rendering weekends, grid lines, etc. Every Gantt chart still has its own subcontrol but they will all know which one is the master.timeline

Tree Table Scrollbar

Another subcontrol found in the control is the tree table scrollbar. In the Gantt chart manages its own horizontalGanttChart FlexGanttFX
scrollbar for the tree table view. This is done so that the scrollbar can be placed inside a control from the project.HiddenSidesPane ControlsFX

Timeline Scrollbar

The graphics view also uses a for its horizontal scrolling control. However, this control is not a regular scrollbar but aHiddenSidesPane
specialization of the control from ControlsFX. The TimelineScrollBar allows the user to scroll to the left and right at differentPlusMinusSlider
speeds, depending on how far the thumb is away from the center location.

Position

The position property of the class is used to inform the Gantt chart where it is located within a multi Gantt chart context (e.g. GanttChart DualGan
or). Possible values are:ttChartContainer MultiGanttChartContainer

Value Description

ONLY The Gantt chart is the only one. This is the default value and will not change if not used in a multi Gantt chart context.

FIRST The Gantt chart is shown at the top of the container.

MIDDLE The Gantt chart is not the first and not the last one. It is also not the only one.

LAST The Gantt chart is shown at the bottom of the container.

The screenshot below shows three charts in a and their position values.MultiGanttChartContainer

This is framework functionality that applications should normally not interfere with.

http://fxexperience.com/controlsfx/features/#hiddensidespane
http://controlsfx.org
http://fxexperience.com/controlsfx/features/#hiddensidespane
http://fxexperience.com/controlsfx/features/#plusminusslider

Factory Methods

There are several protected factory methods used for creating the subcontrols. These methods can be overriden to create subclasses of these
controls.

Method Description

TreeTableView
createTreeTable();

Creates the tree table view shown on the left-hand side of the Gantt chart. A typical use case for replacing this
table is when you already have a tree table view specialization with advanced filtering or interaction options. You
might want to use the same tree table view that your application is already using in other places.

Timeline
createTimeline();

Creates the timeline.

GraphicsBase
createGraphics();

Creates the graphics view. A use case for replacing the standard one might be that your application adds a couple
of nodes to the graphics view. Maybe some kind of overlap on top of the graphics (e.g. a radar).

RowHeader
createRowHeader();

Creates the row header column for the tree table view.

3.2 MultiGanttChartContainer

Introduction

Introduction
A container capable of displaying multiple instances of and keeping their layouts (same table width, same timeline) and their scrollingGanttChart

This is framework functionality that applications should normally not interfere with.

and zooming behaviour in synch. The screenshot below shows the initial appearance of an empty multi Gantt chart container.

3.3 DualGanttChartContainer

Introduction

Introduction

A specialization of capable of displaying exactly two instances of and keeping their layouts (same tableMultiGanttChartContainer GanttChart
width, same timeline) and their scrolling and zooming behavior in synch. The container distinguishes between a primary and a secondary Gantt
chart, where the secondary Gantt chart is located in the detail node section of a MasterDetailPane. It can be hidden or shown on demand. Each
one of the two Gantt charts can have its own header and footer. Initially only the primary header and the secondary footer are used. The header
for displaying an instance of GanttChartToolBar and the footer for displaying an instance of GanttChartStatusBar. The screenshot below shows
the initial appearance of an empty Dual Gantt chart control.

3.4 QuadGanttChartContainer

Introduction

Introduction

A specialization of capable of displaying exactly four instances of and keeping their layouts (same tableMultiGanttChartContainer GanttChart
width, same timeline) and their scrolling and zooming behavior in synch. The container distinguishes between the Gantt chart locations
UPPER_LEFT, UPPER_RIGHT, LOWER_LEFT, LOWER_RIGHT. The timelines of the UPPER_LEFT and LOWER_LEFT Gantt charts are
scrolling in sync and the timelines of the UPPER_RIGHT and LOWER_RIGHT are scrolling in sync.

3.5 GraphicsBase
Introduction
Rendering
System Layers
Editing
Events
Hitpoint Detection
Context Menu

Introduction
The graphics view control is responsible for the rendering of activities and system layers, editing of activities, event notifications, hit detection,
system layer management, and for context menu support.

Rendering
The graphics control uses the node and the direct drawing API of it (as opposed to the deferred rendering done via the Scenegraph).Canvas
This is due to the large data volumes often displayed by Gantt charts. Directly rendering an activity into a bitmap is much faster than updating the
scene graph, reapplying CSS styling, laying out nodes. The graphics control uses a pluggable renderer architecture where renderer instances can
be mapped to activity types, very similar to the way Swing was doing it. The following code is an example of how to register a custom renderer for
a given "Flight" activity and layout type. Please note that the graphics view is capable of displaying activities in three different layouts, hence the
layout type must also be passed to the method.

Renderer Registration

GanttChart ganttChart = new GanttChart();
GraphicsBase<?> graphics = ganttChart.getGraphics();
graphics.setActivityRenderer(
 Flight.class, // the type of activities that will be rendered
 GanttLayout.class, // the type of layout where the renderer will be used
 new FlightRenderer(graphics)); // the actual renderer instance

System Layers

Activities are not the only thing that need to be displayed. There are also the current time ("now"), grid lines, inner lines, agenda / chart lines, and
so on. All of these things are rendered by so-called . The graphics control manages two lists of these layers. One list for backgroundsystem layers
layers and one list for foreground layers.

Background layers are drawn "behind" activities, foreground layers are drawn "in front of" activities. Each one of these lists are already
pre-populated but can be changed by the application. For more information on the available system layers, please refer to their individual

.documentation

System layers can be turned on and off directly via the API of the graphics control. There is a boolean property for each layer. The value of these
properties can be set by calling the methods that follow the pattern . System layers that are controlled like this will appear andsetShowXYZLayer
disappear with a fade in / fade out animation, while calling directly will be without any animation.SystemLayer.setVisible(boolean)

Editing
Two different callbacks are used to control the editing behaviour of activities. The first maps a mouse event / mouse location to an GraphicsBas

 and can be registered by calling . The second callback is used toe.EditMode setEditModeCallback(Class, Class, Callback)
determine whether a given editing mode / operation can be applied to an activity at all. This callback is registered by calling setActivityEditi

. Most applications will only need to work with the second callback and keep the defaults for the edit modengCallback(Class, Callback)
locations (for example: right edge used to change end time, left edge used to change start time).

Events

Events of type are sent whenever the user performs a change inside the graphics view. Applications that want to receive theseActivityEvent
events can either call any one of the methods or by adding an event handler directly via setOnActivityXYZEvent() addEventHandler(Act

. Events are fired while the change is being performed and once it has been completed. For this the ionEvent.ACTIVITY_XYZ, ...) Activi
 class lists event types with the two different endings CHANGING and CHANGED.tyEvent

Hitpoint Detection
The graphics view provides support for finding out information about a given position. Activities can be found by calling getActivityBoundsAt

 or . The time at an x-coordinate can be looked up by calling (double, double) getActivityRefAt(double, double) getTimeAt(doub
. The opposite direction is also available: a location can be found for a given time by calling .le) getLocation(Instant)

Context Menu
Context menus can be set on any control in JavaFX but due to the complexitiy of the graphics view it does make sense to provide additional
built-in support. By calling a context menu specific callback can be registered with the graphicssetContextMenuCallback(Callback)
control. This callback will be invoked when the user triggers the context menu. A callback parameter object (see GraphicsBase.ContextMenu

) will be passed to the callback already populated with the most important values that might be relevant for building a context menu. Parameter

3.4.1 System Layers

Introduction

Available Layers

Introduction

System layers are used in the background and foreground of each row. A background layer gets drawn the activities are drawn while abefore
foreground layer gets drawn the activities are drawn. Each layer is specialized on drawing one type of information: current time, selectedafter
time intervals, grid lines, and so on. The manages the layers in two lists and provides convenience methods to easily look them up.graphics view

Method Description

getBackgroundSystemLayers() Returns the complete list of system layers used in the background of activities.

getForegroundSystemLayers() Returns the complete list of system layers used in the foreground of activities.

getBackgroundSystemLayer(Class) Returns the system background layer instance of the given type.

getForegroundSystemLayer(Class) Returns the system foreground layer instance of the given type.

getSystemLayer(Class) Returns the system layer instance of the given type, no matter if it is a foreground or background
layer.

Layers can be added to or removed from the graphics view by adding them to or removing them from the foreground or background list.
Once you have looked up a layer you can set its properties to customize its appearance. The most common properties are used for line
colors and widths.

System Layer Example

GraphicsBase<?> graphics = ganttChart.getGraphics();
NowLineLayer nowLayer = graphics.getBackgroundSystemLayer(NowLineLayer
.class);
nowLayer.setStroke(Color.ORANGE);
nowLayer.setLineWidth(3); // thick line

System Layers vs. Model Layers
Please note that system layers are not related in any way to model layers. A system layer is basically a renderer for some graphical
feedback while a model layer is used for grouping activities.

Available Layers

The following table lists all system layers that are shipping with . The last two columns (FG, BG) are used to indicate whether theFlexGanttFX
layer is used as a foreground or as a background layer.

Layer Description FG BG

AgendaLinesLayer Draws the horizontal grid lines for a if the row or any of its inner lines are using the .row agenda layout

CalendarLayer Draws the entries returned by the attached to a or attached to the entire graphics view. Thecalendars row
calendar layer uses pluggable renderers that are mapped to the entry types. Applications can register their own
renderers by calling .CalendarLayer.setCalendarActivityRenderer()

ChartLinesLayer Draws the horizontal grid lines for a if the row or any of its inner lines are using the .row chart layout

GridLinesLayer Draws the vertical grid lines based on the scale resolutions currently present in the . The layer can bedateline
configured to display 0 to 3 grid line levels. If the is, for example, showing days and weeks then a level ofdateline
2 would cause the layer to draw grid lines for days and weeks, while a grid line level of 1 would only render grid
lines for days.

HoverTimeIntervalLayer Draws the hover time interval specified by the . If the mouse cursor hovers over a week in the thedateline dateline
n the layer will fill the time interval defined by this week with a highlighting color.

InnerLinesLayer Draws separator lines between inner lines.

LayoutLayer Draws the padding areas. Each layout may have some padding added to its top and bottom. This layer fillslayout
the padding area with a solid color.

NowLineLayer Draws a vertical line at the location of the current time / now time. The current time is defined in the timeline
.model

RowLayer Draws the background of each row. The layer can be configured with pluggable renderers that are mapped to the
type of the row. Applications can register their own renderers by calling . For moreRowLayer.setRowRenderer()
information please read .3.4.7 Row Rendering

ScaleLayer Draws a scale for an entire or for each line within the row. Scales vary depending on the used for therow layout
row / line. The scale for the displays the minimum and maximum values while the scale for the chart layout agend

 displays a time scale (8am, 9am, 10am,). The labels and dashes in the scale layer have to aligna layout
perfectly with the lines drawn by the agenda lines layer and the chart lines layer.

SelectedTimeIntervalsLayer Draws the time intervals that were selected by the user (or the application) in the .dateline

ZoomIntervalLayer Draws the zoom interval as defined by the timeline. The zoom interval gets created by the user via the help of the
timeline lasso.

3.4.2 Drag & Drop

Introduction
Events
Drag And Drop Info Property
Feedback Types
Drag Image Provider

Introduction

The platform (Windows, Mac) provided drag and drop (DnD) facilities are used in only to move an activity from one and to FlexGanttFX row
another. All other editing operations are handled with standard mouse events (pressed, dragged).The new row might actually be a row in another

. The default way to initiate a DnD is to move the mouse cursor into the center of an while pressing the key. This willGantt chart activity SHIFT
change the cursor to the DnD cursor if this kind of editing operation is supported by the targeted activity (see also " "). The3.4.4 Activity Editing
DnD will terminate once the user lets go of the mouse button.

Events

Just like all the other editing operations DnD will also trigger several events during its execution. The following table lists them:

Event Type Description

By default the line width property of this layer is set to 0 and the lines will not be drawn at all. To
change this simply set a line width greater than 0.

DRAG_STARTED

DRAG_ONGOING

DRAG_FINISHED

These event types are fired if the editing operation is EditMode.DRAGGING.

VERTICAL_DRAG_STARTED

VERTICAL_DRAG_ONGOING

VERTICAL_DRAG_FINISHED

These event types are fired if the editing operation is EditMode.DRAGGING_VERTICAL.

Drag And Drop Info Property

A special property called is available on the to monitor the DnD operation. This is in addition to the standarddragAndDropInfo graphics view
event types mentioned above. The info stored in this property provides the application with the most important information required about the
dragged activity.

Field Description

row The row over which the mouse cursor / the dragged activity is currently hovering.

activityBounds The bouds of the dragged activity (contains an activity reference and the actual activity).

dragEvent The last drag event (drag ongoing or drag dropped).

dropInterval The time interval where the activity would be or was actually dropped.

offset The offset where the mouse grabbed the activity (needed for visual feedback of the drag).

Feedback Types

provides different ways of visualizing the DnD feedback. The enumerator lists the following values which FlexGanttFX DragAndDropFeedback
an be set by calling the method on .setDragAndDropFeedback() GraphicsBase

Value Description

NATIVE A snapshot image of the activity will be taken and placed below the mouse cursor. The image will be set at the
moment the drag gesture gets recognized. Optionally a drag image provider can be used.

RENDERED The dragged activity will be constantly rendered on a separate canvas on top of the graphics area. The activity is
guaranteed to keep its original size.

RENDERED_GRID_SNAPPED The dragged activity will be constantly rendered on a separate canvas on top of the graphics area. The activity is
guaranteed to keep its original size. The currently active grid will be used to make the dragged activity snap to
the grid locations.

Drag Image Provider

If the DnD feedback type has been set to then it is possible to pass a custom image for the drag operation. This can be accomplished byNATIVE
setting a drag image provider on by calling . This method accepts a callback lambda expression. TheGraphicsBase setDragImageProvider()
input for the callback will be an and the output will be an image. ActivityRef

The edit mode DRAGGING_HORIZONTAL does not use platform DnD. Hence the event types HORIZOTAL_DRAG_STARTED /
ONGOING / FINISHED are not listed above.

The size of the image might be different than the size of the activity (platform-specific).

Drag Image Provider

GraphicsBase<?> graphics = ganttChart.getGraphics();
graphics.setDragImageProvider(ref -> createImage(ref));

3.4.3 Event Handling

Introduction
Activity Events
Activity Events Hierarchy
Activity Event Properties
Lasso Events
Lasso Event Hierarchy
Lasso Info
Links / Further Reading

Introduction

The fires standard JavaFX events in order to let applications react to change. The concepts used for event handler support in graphics view Flex
are the same as the ones found in the standard JavaFX controls. GanttFX

Activity Events

Activity events are fired whenever the user deletes or edits an activity. To receive an activity event simply register an event handler with the graph
 via one of the convenience methods.ics view

Single Activity Event Handler

GraphicsBase<?> graphics = ganttChart.getGraphics();
graphics.setOnActivityChangeFinished(evt ->
 System.out.println("An activity has changed"));

If you need to register more than one handler for a specific event type then use this approach:

Multiple Activity Event Handlers

GraphicsBase<?> graphics = ganttChart.getGraphics();
graphics.addEventHandler(ActivityEvent.ACTIVITY_CHANGE_FINISHED,
 evt -> System.out.println("Listener 1"));
graphics.addEventHandler(ActivityEvent.ACTIVITY_CHANGE_FINISHED,
 evt -> System.out.println("Listener 2"));

The following table lists all supported activity event types and the convenience setter methods of the . These methods are used tographics view
quickly register an event handler for the given event type.

Event Types Methods Description

ACTIVITY_DELETED setOnActivityDeleted() Fired whenever the user deletes an
activity via the backspace key.

The default image is a snapshot of the activity at the moment when the drag started.

ACTIVITY_CHANGE setOnActivityChanged() The parent event type of all activity
changes. Can be used to to receive a
notification for any kind of activity
change.

ACTIVITY_CHANGE_STARTED

ACTIVITY_CHANGE_ONGOING

ACTIVITY_CHANGE_FINISHED

setOnActivityChangeStarted()

setOnActivityChangeOngoing()

setOnActivityChangeFinished()

Fired whenever an activity change has
started, is ongoing, or has finished.

CHART_HIGH_VALUE_CHANGE_STARTED

CHART_HIGH_VALUE_CHANGE_ONGOING

CHART_HIGH_VALUE_CHANGE_FINISHED

setOnChartHighValueChangeStarted();

setOnChartHighValueChangeOngoing();

setOnChartHighValueChangeFinished();

Fired whenever the user has started
editing, is in the process of editing, or
has finished editing the "high" value of a
high / low chart activity.

CHART_LOW_VALUE_CHANGE_STARTED

CHART_LOW_VALUE_CHANGE_ONGOING

CHART_LOW_VALUE_CHANGE_FINISHED

setOnChartLowValueChangeStarted();

setOnChartLowValueChangeOngoing();

setOnChartLowValueChangeFinished();

Fired whenever the user has started
editing, is in the process of editing, or
has finished editing the "low" value of a
high / low chart activity.

CHART_VALUE_CHANGE_STARTED

CHART_VALUE_CHANGE_ONGOING

CHART_VALUE_CHANGE_FINISHED

setOnChartValueChangeStarted();

setOnChartValueChangeOngoing();

setOnChartValueChangeFinished();

Fired whenever the user has started
editing, is in the process of editing, or
has finished editing a chart value of a
chart activity.

DRAG_STARTED

DRAG_ONGOING

DRAG_FINISHED

setOnActivityDragStarted();

setOnActivityDragOngoing();

setOnActivityDragFinished();

Fired whenever the user has started
dragging, is in the process of dragging,
or has finished dragging an activity via
platform-provided drag & drop. This
event type is used when the user can
freely move the activity around, vertically
and horizontally.

END_TIME_CHANGE_STARTED

END_TIME_CHANGE_ONGOING

END_TIME_CHANGE_FINISHED

setOnActivityEndTimeChangeStarted();

setOnActivityEndTimeChangeOngoing();

setOnActivityEndTimeChangeFinished();

Fired whenever the user has started
changing, is in the process of changing,
or has finished changing the end time of
an activity.

HORIZONTAL_DRAG_STARTED

HORIZONTAL_DRAG_ONGOING

HORIZONTAL_DRAG_FINISHED

setOnActivityHorizontalDragStarted();

setOnActivityHorizontalDragOngoing();

setOnActivityHorizontalDragFinished();

Fired whenever the user has started
changing, is in the process of changing,
or has finished changing the time
interval (start end time) of anand
activity. Changing this time interval
makes the activity move horizontally,
either to the right (future) or the left
(past).

PERCENTAGE_CHANGE_STARTED

PERCENTAGE_CHANGE_ONGOING

PERCENTAGE_CHANGE_FINISHED

setOnActivityPercentageChangeStarted();

setOnActivityPercentageChangeOngoing();

setOnActivityPercentageChangeFinished();

Fired whenever the user has started
changing, is in the process of changing,
or has finished changing the
"percentage complete" value of an
activity.

START_TIME_CHANGE_STARTED

START_TIME_CHANGE_ONGOING

START_TIME_CHANGE_FINISHED

setOnActivityStartTimeChangeStarted();

setOnActivityStartTimeChangeOngoing();

setOnActivityStartTimeChangeFinished();

Fired whenever the user has started
changing, is in the process of changing,
or has finished changing the start time of
an activity.

VERTICAL_DRAG_STARTED

VERTICAL_DRAG_ONGOING

VERTICAL_DRAG_FINISHED

setOnActivityVerticalDragStarted();

setOnActivityVerticalDragOngoing();

setOnActivityVerticalDragFinished();

Fired whenever the user has started
dragging, is in the process of dragging,
or has finished dragging an activity via
platform-provided drag & drop. This
event type is used when the user can
only drag the activity vertically (reassign
an activity to a different row).

Activity Events Hierarchy

The event types defined in the class are defining an event hierarchy. All events are input events (InputEvent.ANY) and theyActivityEvent
change the activity. Some of them get fired when the user starts the change, some while the change is ongoing, and some when the change is
finished.

InputEvent.ANY

ACTIVITY_CHANGE

ACTIVITY_DELETED

ACTIVITY_CHANGE_STARTED // All event types that signal "start"

CHART_VALUE_CHANGE_STARTED

CHART_HIGH_VALUE_CHANGE_STARTED

CHART_LOW_VALUE_CHANGE_STARTED

DRAG_STARTED

END_TIME_CHANGE_STARTED

HORIZONTAL_DRAG_STARTED

PERCENTAGE_CHANGE_STARTED

START_TIME_CHANGE_STARTED

VERTICAL_DRAG_STARTED

ACTIVITY_CHANGE_ONGOING // All event types that signal "ongoing"

CHART_VALUE_CHANGE_ONGOING

CHART_HIGH_VALUE_CHANGE_ONGOING

CHART_LOW_VALUE_CHANGE_ONGOING

DRAG_ONGOING

END_TIME_CHANGE_ONGOING

HORIZONTAL_DRAG_ONGOING

PERCENTAGE_CHANGE_ONGOING

START_TIME_CHANGE_ONGOING

VERTICAL_DRAG_ONGOING

ACTIVITY_CHANGE_FINISHED // All event types that signal "finished"

CHART_VALUE_CHANGE_FINISHED

CHART_HIGH_VALUE_CHANGE_FINISHED

CHART_LOW_VALUE_CHANGE_FINISHED

DRAG_FINISHED

END_TIME_CHANGE_FINISHED

HORIZONTAL_DRAG_FINISHED

PERCENTAGE_CHANGE_FINISHED

START_TIME_CHANGE_FINISHED

VERTICAL_DRAG_FINISHED

Activity Event Properties

Applications are obviously interested in the attributes of an activity. Not only the new values of these attributes (for example the new start time)
but also the old values (start time the change). The new values are already available on the activity as they are being set the userbefore while
performs the change. The old values are stored on the event object. The following table lists the methods on to retrieve theseActivityEvent
values.

Method Description Event Types

getOldTime() Returns the old start end time of the activity.or END_TIME_CHANGE_

START_TIME_CHANGE_

getOldTimeInterval() Returns the old start end time of the activity.and DRAG_

HORIZONTAL_DRAG_

VERTICAL_DRAG_

getOldRow() Returns the old row where the activity was located before. DRAG_

VERTICAL_DRAG_

getOldValue() Returns the old value of "percentage complete" or "chart value". CHART_VALUE_CHANGE_

CHART_HIGH_VALUE_

CHART_LOW_VALUE_

PERCENTAGE_CHANGE_

Lasso Events

The user can use a lasso to select activities. Events are fired when this happens. To receive a lasso event simply register an event handler with
 via one of the convenience methods.the graphics view

Singe Lasso Event Handler

GraphicsBase<?> graphics = ganttChart.getGraphics();
graphics.setOnLassoFinished(evt ->
 System.out.println("The lasso was used"));

If you need to register more than one handler for a specific event type then use this approach:

Multiple Lasso Event Handlers

GraphicsBase<?> graphics = ganttChart.getGraphics();
graphics.addEventHandler(LassoEvent.SELECTION_FINISHED,
 evt -> System.out.println("Listener 1"));
graphics.addEventHandler(LassoEvent.SELECTION_FINISHED,
 evt -> System.out.println("Listener 2"));

The following table lists the event types and the convenience setter methods of the .graphics view

Event Type Method Description

ALL setOnLassoSelection() Any lasso operation (start, ongoing, finished).

SELECTION_STARTED setOnLassoSelectionStarted() The user has pressed the mouse button and started a drag. The lasso has
become visible.

SELECTION_ONGOING setOnLassoSelectionOngoing() The user is changing the size of the lasso.

SELECTION_FINISHED setOnLassoSelectionFinished() The user has finished the lasso selection. The lasso is no longer visible.

Lasso Event Hierarchy

 The event types defined in the class are defining an event hierarchy. All events are input events (InputEvent.ANY). LassoEvent

InputEvent.ANY

LassoEvent.ALL

LassoEvent.SELECTION_STARTED

LassoEvent.SELECTION_ONGOING

LassoEvent.SELECTION_FINISHED

Lasso Info

The lasso automatically performs selections of activities but sometimes we might want to know more about the exact nature of this selection or we
want to use the lasso for another use case (e.g. for creating new activities). For this reason instances of also provide an object ofLassoEvent
type , which carries many attributes that the application can use to react accordingly. The lasso information can be retrieved by calling LassoInfo

. The following table lists the attributes of .LassoEvent.getInfo() LassoInfo

Method Description

List<ActivityRef<?>>
getActivities();

Returns all activities that were selected by the lasso.

Instant getStartTime();

Instant getEndTime();

Returns the start and end time of the lasso according to the location of the and edge of the lasso.left right

LocalTime
getLocalStartTime();

LocalTime
getLocalEndTime();

Returns the start and end time. These values are only provided if the or edge of the lassolocal upper lower
is located in an area that uses the .AgendaLayout

List<Row<?,?,?>>
getRows();

Returns the rows that were touched by the lasso.

Links / Further Reading

Oracle JavaFX documentation
Event handling examples

3.4.4 Activity Editing

Introduction
Edit Mode Callback

Edit Mode Callback Parameter
Edit Mode Callback Example

Editing Callback

http://docs.oracle.com/javase/8/javafx/events-tutorial/events.htm#JFXED117
http://code.makery.ch/blog/javafx-8-event-handling-examples/

Editing Callback Parameter
Editing Callback Example

Introduction

Two different callbacks on the are used to control the editing behaviour of activities. The first maps a mouse event / mouse locationgraphics view
to an editing mode. The second callback is used to determine whether a given editing mode / operation can be applied to an activity at all. Most
applications will only need to work with the second callback and keep the defaults for the edit mode locations (for example: right edge used to
change end time, left edge used to change start time). The enum lists all available editing operations that can beGraphicsBase.EditMode
performed on an activity.

Mode Description

AGENDA_ASSIGNING Assign an activity in to another row. AgendaLayout

AGENDA_DRAGGING Drag an activity in up and down or sideways within the same row. AgendaLayout

AGENDA_END_TIME_CHANGE Change the end time of an activity in .AgendaLayout

AGENDA_START_TIME_CHANGE Chagne the start time of an activity in .AgendaLayout

CHART_VALUE_CHANGE Change the value of a .ChartActivity

CHART_VALUE_HIGH_CHANGE Change the "high" value of a .HighLowActivity

CHART_VALUE_LOW_CHANGE Change the "low" value of a .HighLowActivity

DRAGGING Perform a drag and drop in all directions on an activity.

DRAGGING_HORIZONTAL Move an activity horizontally within its own row (change start and end time).

DRAGGING_VERTICAL Perform a drag and drop on an activity in vertical direction only.

END_TIME_CHANGE Change the end time of an activity.

NONE Do nothing.

PERCENTAGE_COMPLETE_CHANGE Change the "percentage complete" value of a .CompletableActivity

START_TIME_CHANGE Change the start time of an activity.

Edit Mode Callback

The edit mode callback is used to determine the edit mode at the given mouse location. Instances of this callback can be registered via the Graph
 method which maps the callback to a combination of activity type and type.icsBase.setEditModeCallback() layout

Edit Mode Callback Registration

public final void setEditModeCallback(
 Class<? extends MutableActivity> activityType,
 Class<? extends Layout> layoutType,
 Callback<EditModeCallbackParameter, EditMode> callback);

Edit Mode Callback Parameter

The parameter object passed to the edit mode callback is of type and contains the following information:EditModeCallbackParameter

Field Description

activityBounds The bounds of the activity over which the mouse cursor is hovering. The x and y coordinates are relative to the coordinate
space of the row where the activity is displayed.

mouseEvent The mouse event that triggered the lookup of the edit mode (normally a MOUSE_OVER).

Edit Mode Callback Example

 The following is a simple example of an editing mode callback.

Edit Mode Callback Example

public class MyEditModeCallback implements
Callback<EditModeCallbackParameter, EditMode> {

 public EditMode call(EditModeCallbackParameter param) {
 MouseEvent event = param.getMouseEvent();
 ActivityBounds bounds = param.getActivityBounds();

 /*
 * If the mouse cursor is touching the left edge of the activity
 * then begin a change of the start time of the activity.
 */
 if (event.getX() - bounds.getMinX() < 5) {
 return EditMode.CHANGE_START_TIME;
 }

 return EditMode.NONE;
 }
}

This callback can now be registered like this:

Edit Mode Callback Registration

GraphicsBase<?> graphics = ganttChart.getGraphics();
graphics.setEditModeCallback(
 ActivityBase.class,
 GanttLayout.class,
 new MyEditModeCallback());

Editing Callback

The editing callback is used to determine if a specific edit mode is currently usable for a given activity. Instances of this callback can be registered
via the method which maps the callback to an activity type.GraphicsBase.setActivityEditingCallback()

Edit Mode Callback Registration

public final void setActivityEditingCallback(
 Class<? extends MutableActivity> activityType,
 Callback<EditingCallbackParameter, Boolean> callback);

Editing Callback Parameter

The parameter object passed to the editing callback is of type and contains the following information:EditingCallbackParameter

We could have used a lambda expression for the entire callback instance but decided against it in favor of verbosity.

Field Description

activityRef The reference to the activity for which to perform the check.

editMode The edit mode that needs a check.

Editing Callback Example

The following is a simple example of an editing mode callback.

Edit Mode Callback Example

public class MyEditingCallback implements
Callback<EditingCallbackParameter, Boolean> {

 public Boolean call(EditingCallbackParameter param) {
 ActivityRef ref = param.getActivityRef();
 Activity activity = ref.getActivity();

 /*
 * Only allow editing for activities that that have not
 * started, yet.
 */
 if (activity.getStartTime().isAfter(Instant.now())) {

 /*
 * Only allow changes to the start and end time
 * of the activity.
 */
 switch (param.getEditMode()) {
 case CHANGE_START_TIME:
 case CHANGE_END_TIME:
 return true;
 default:
 return false;
 }
 }

 return false;
 }
}

This callback can now be registered like this:

Editing Callback Registration

GraphicsBase<?> graphics = ganttChart.getGraphics();
graphics.setActivityEditingCallback(
 ActivityBase.class,
 new MyEditingCallback());

3.4.5 Row Editing

Introduction
Row Editor Factory
Row Controls Factory

Example 1
Example 2

Introduction

The not only supports editing but also . If a row gets edited the entire row will be flipped around and additionalgraphics view activities rows
controls will become visible on the "back" of the row. If the back of the row requires more space (height) than the front of the row then the height
will be automatically adjusted. The following table lists the methods that are related to row editing:

Method Description

void startRowEditing(R row); Initiates the row editing sequence on the given row. The back of the row will become visible
and expose controls to change row settings.

void stopRowEditing();

void stopRowEditing(R row);

Stops the row editing of all rows or just the given row. The front of the row will become visible
again.

ObjectProperty<RowEditingMode>
rowEditingModeProperty();

void
setRowEditingMode(RowEditingMode);

RowEditingMode getRowEditingMode();

Stores, sets, and retrieves the row edit mode. The enum isGraphicsBase.RowEditingMode
used to determine whether the user will be able to edit rows at all, one row at a time, or
multiple rows at the same time.

ObservableList<R> getRowsEditing(); An observable list of all rows that are currently being edited (their back is shown).

BooleanProperty animateRowEditor();

void setAnimateRowEditor(boolean);

boolean isAnimateRowEditor();

Stores, sets, and retrieves a flag that is used to signal whether the exposure of the row back
will be immediate or animated.

Row Editor Factory

The row editor factory is used to create the controls for a given row at the moment when the user requests that the row will be edited. The factory
is a callback method that gets called with a object. This parameter object stores some fields that can beGraphicsBase.RowEditorParameter
useful for creating the editor controls and also a method for stopping the row editing.

Method Description

GraphicsBase
getGraphics();

Returns a reference to the graphics view where the editing will occure.

R getRow(); Returns the row for which the row editor will be created.

void
stopEditing();

A convenience method for the row editor controls that can be used to signal that the user is done editing the row. This
method will usually get invoked by some kind of close button in the editor UI:

A row editor factory might look like this:

Row Editor Example

public class MyRowEditorFactory implements
 Callback<RowEditorParameter<R>, Node> {

 public Node call(RowEditorParameter<R> param) {
 VBox box = new VBox();

 /*
 * Bind the text property of the textfield to the name
 * property of the row. This allows us to change the name
 * of the row.
 */
 TextField nameField = new TextField();
 Bindings.bindBidirectional(param.getRow().nameProperty(),
nameField.textProperty());

 /*
 * A close button to invoke the stopEditing() method
 * on the parameter object.
 */
 Button closeButton = new Button("Close");
 closeButton.setOnAction(evt -> param.stopEditing());
 box.getChildren().addAll(nameField, closeButton);

 /*
 * Return the vbox node.
 */
 return box;
 }
}

Row editors can be registered like this:

Row Editor Registration

GraphicsBase<?> graphics = ganttChart.getGraphics();
graphics.setRowEditorFactory(new MyRowEditorFactory());

Row Controls Factory

To trigger row editing the user interface needs to provide some kind of controls. This can be done in many ways, for example by the help of a
context menu on a row. Another way is to use the built-in support for so-called "row controls". These controls appear / disappear every time the
mouse cursor enters / exists a row. They are created by a callback implementation. This callback receives a parameter object of type GraphicsB

. The following table lists the fields of this type.ase.RowControlsParameter

Field Description

graphics The graphics view for which the callback gets invoked.

row The row for which controls will be created.

Example 1

A possible implementation of this callback can look like this:

Row Controls Factory

public class MyRowControlsFactory extends StackPane
 implements Callback<RowControlsParameter, Node> {

 private Button button;

 public MyRowControlsFactory() {

 /*
 * Important: let mouse events pass through.
 */
 setMouseTransparent(true);
 button = new Button("Press Me");
 getChildren().add(button);
 }

 /*
 * Reuse the button. Simply exchange the action that will
 * happen when the user presses on it.
 */
 public Node call(RowControlsParameter param) {
 button.setOnAction(evt ->
 System.out.println("Pressed on row " +
 param.getRow().getName());
 return this;
 }
}

The callback can be registered like this:

Row Controls Factory Registration

GraphicsBase<?> graphics = ganttChart.getGraphics();
graphics.setRowControlsFactory(new MyRowControlsFactory());

Example 2

The following is the code of the RowControls class in the FlexGanttFX "Extras" project. It adds a simple "Edit" button to the row. When clicked it
will show the row editor controls on the back on the row.

Please take notice that this factory is a Node object and returns itself every time the call() method gets invoked. Only the action of the
button gets replaced with each inocation. This makes perfect sense as row controls are always only shown for one row at a time (as
opposed to row editors where several of them can be in use at the same time).

RowControls.java

 /**
 * Copyright (C) 2014 Dirk Lemmermann Software & Consulting (dlsc.com)
 *
 * This file is part of FlexGanttFX.
 */
package com.flexganttfx.extras;

import javafx.geometry.Pos;
import javafx.scene.Node;
import javafx.scene.control.Button;
import javafx.scene.layout.HBox;
import javafx.util.Callback;
import com.flexganttfx.model.Row;
import com.flexganttfx.view.graphics.GraphicsBase.RowControlsParameter;

public class RowControls<R extends Row<?, ?, ?>> extends HBox implements
 Callback<RowControlsParameter<R>, Node> {

 private Button editButton;

 public RowControls() {
 setPickOnBounds(false);
 setMinSize(0, 0);
 setAlignment(Pos.TOP_RIGHT);
 setFillHeight(true);
 editButton = new Button("EDIT");
 editButton.getStyleClass().add("row-controls-button");
 getChildren().add(editButton);
 }

 @Override
 public Node call(RowControlsParameter<R> param) {
 editButton.setOnAction(evt -> param.getGraphics().startRowEditing(
 param.getRow()));
 return this;
 }
}

The matching CSS for the button is defined like this:

RowControls Button CSS

/*
 * Row controls button are shown when the mouse hovers over a row that can
be
 * edited (flipped around).
 */
.row-controls-button {
 -fx-padding: 5 9 7 7;
 -fx-background-insets: 0 4 2 2;
 -fx-background-color: rgba(0,0,0,.5);
 -fx-background-radius: 0;
 -fx-text-fill: white;
 -fx-font-size: 8;
 -fx-font-weight: bold;
}

.row-controls-button:hover,

.row-controls-button:focused {
 -fx-padding: 5 9 7 7;
 -fx-background-insets: 0 4 2 2;
 -fx-background-color: rgba(0,0,0,.6);
 -fx-background-radius: 0;
 -fx-text-fill: white;
 -fx-font-size: 8;
 -fx-font-weight: bold;
}

.row-controls-button:pressed,

.row-controls-button:selected {
 -fx-background-color: rgba(0,0,0,.7);
 -fx-background-radius: 0;
}

3.4.6 Activity Rendering

Introduction
Drawing
Default Renderers
Activity Bounds
Properties

Introduction

The graphics view uses the of JavaFX. This is due to the complex nature of a Gantt chart and due to the large data volumes oftencanvas API
observed inside of them. Directly rendering large quantities of activities into a bitmap is much faster than constantly updating the scene graph and
reapplying CSS styling. FlexGanttFX implements a pluggable renderer architecture where renderer instances can be mapped to activity types,
very similar to the way Swing was doing it.

The following code is an example of how to register a custom renderer for a given "Flight" activity type. Please note that the graphics view is
capable of displaying activities in different layouts, hence the layout type must also be passed to the method.

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/canvas/Canvas.html

Renderer Registration

GraphicsBase<?> graphics = ganttChart.getGraphics();
graphics.setActivityRenderer(
 Flight.class,
 GanttLayout.class,
 new FlightRenderer(graphics));

The following methods on are used for working with renderers:GraphicsBase

Method Description

void setActivityRenderer(...); Registers a new renderer for the given activity and layout type.

ActivityRenderer getActivityRenderer(...); Returns a renderer for the given activity and layout type.

Drawing

Activity renderers have a single entry point for drawing, a method called . This method is and can not be overriden. Once invoked itdraw() final
will call various protected methods to perform the actual drawing. The call hierarchy looks like this:

public final calls ...draw()
protected ActivityBounds drawActivity()

protected void drawBackground()
protected void drawBorder()

Subclasses are free to override any of the three protected methods to customize the activity appearance.

All drawXXX() methods have the same arguments:

Arguments

ActivityRef<A> activityRef, // the activity to draw
Position position, // agenda layout only (first, middle, last, only)
GraphicsContext gc, // the graphics context into which to draw
double x, // the location of the start time of the activity
double y, // the y coordinate (0 when drawn on row or line location)
double w, // end time location minus start time location
double h, // row or line height
boolean selected, // is activity currently selected?
boolean hover, // is mouse cursor currently hovering over it?
boolean highlighted, // is activity currently blinking?
boolean pressed) // is user currently pressing on it?

Default Renderers

The following table lists the various activity renderers that are provided by default.

Renderer Class Description

We usually also pass the graphics view to the renderer at construction time. This is needed as renderers will invoke a redraw on the
graphics when any of its properties changes. This is very different to the Swing approach. This also implies that renderer instances
should only be used for a single graphics view, the one that was passed to their constructor.

ActivityRenderer The most basic renderer for activities. Draws a filled rectangle at the location of the activity. All default
renderers are subclasses of this type.

ActivityBarRenderer Draws a bar instead of filling the entire area. The height of the bar can be specified.

ChartActivityRenderer Draws a vertically depending on its chart value.ChartActivity

CompletableActivityRenderer Subclass of the bar renderer. Draws a as a bar with a section of its backgroundCompletableActivity
filled with another color. The size of the section depends on the percentage complete value of the
activity.

 These default renderers are attached to this page and can be downloaded here:

 File Modified

 ChartActivityRenderer.java
Base renderer for chart activities.

 Oct 07, 2014 by Dirk
Lemmermann [Administrator]

 ActivityRenderer.java
The base class for all activity renderers.

 Oct 07, 2014 by Dirk
Lemmermann [Administrator]

 ActivityBarRenderer.java
The base class for all activity renderers that want to display a thin bar.

 Oct 07, 2014 by Dirk
Lemmermann [Administrator]

 CompletableActivityRenderer.java
Base renderer for completable activities.

 Oct 07, 2014 by Dirk
Lemmermann [Administrator]

Download All

Activity Bounds

Every activity renderer is responsible for returning an instance of after drawing the activity. These bounds are an essential pieceActivityBounds
for the framework and many operations will only work properly if these bounds are valid. They are being used for editing activities, for hitpoint
detection, for laying out links, for context menus, and so on. The following table lists the attributes of the class.ActivityBounds

Attribute Description

activity The activity for which these are the bounds.

activityRef An activity referene pointing to the activity.

layer The layer on which the activity was drawn.

layout The layout that was used when the activity was drawn.

lineIndex The index of the line on which the activity is located (-1 if activity is on the row, not a line).

position The position of the bounds when the activity was drawn in agenda layout (first, middle, layout). This is needed becaue the same
activity might be rendered in several pieces across several days.

row The row where the activity was drawn.

Properties

All renderers define several properties that can be used to customize their apperance. Many of these properties are depenent on the "pseudo
state" of the activity: hover, pressed, selected, highlighted. To make it easier to lookup the right color at the right time several convenience

Also supports text in several locations inside and outside the bar.

Please ignore the attributes , , and the list . These are all used internally for overlapColumn overlapCount overlapBounds agenda
 related operations.layout

https://flexgantt.atlassian.net/wiki/download/attachments/491747/ChartActivityRenderer.java?api=v2
https://flexgantt.atlassian.net/wiki/download/attachments/491747/ActivityRenderer.java?api=v2
https://flexgantt.atlassian.net/wiki/download/attachments/491747/ActivityBarRenderer.java?api=v2
https://flexgantt.atlassian.net/wiki/download/attachments/491747/CompletableActivityRenderer.java?api=v2
https://flexgantt.atlassian.net/wiki/download/all_attachments?pageId=491747

methods are available:

Renderer Method Description

Renderer protected getFill(boolean selected,Paint
 boolean hover,
 boolean highlighted,
 boolean pressed);

Returns the color to use for the activity
background depending on pseudo states
passed.

ActivityRenderer protected getStroke(boolean selected,Paint
 boolean hover,
 boolean highlighted,
 boolean pressed);

Returns the color to use for the activity border
depending on pseudo states passed.

ActivityBarRenderer protected getTextFill(boolean selected,Paint
 boolean hover,
 boolean highlighted,
 boolean pressed);

Returns the color to use for text depending on
pseudo states passed.

3.4.7 Row Rendering

Introduction
Row Renderer

Introduction

The system layer supports pluggable renderers in order to customize the background of each row depending on the row type. In theRowLayer
tutorial we have seen that we can have Aircraft rows and Crew rows. For clarity these two rows could have different background colors. This is
something that could be done with a row renderer.

Row Renderer

All row renderers have to subclass . This class defines a final public method called that gets called by the framework. It thenRowRenderer draw()
calls the protected method which subclasses can override. A possible implementation might look like this:drawRow()

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/Paint.html?is-external=true
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/Paint.html?is-external=true
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/Paint.html?is-external=true

Custom Row Renderer

public class AircraftRowRenderer extends RowRenderer<Aircraft> {

 public AircraftRowRenderer(GraphicsBase<?> graphics) {
 super(graphics, "Aircraft Row Renderer");
 }

 protected void drawRow(Aircraft row,
 GraphicsContext gc,
 double w,
 double h,
 boolean selected,
 boolean hover,
 boolean highlighted,
 boolean pressed) {
 gc.setFill(Color.ORANGE);
 gc.fillRect(0, 0, w, h);
 }
}

This renderer can now be registered with the RowLayer like this:

Row Renderer Registration

GraphicsBase<?> graphics = ganttChart.getGraphics();
graphics.getSystemLayer(RowLayer.class).setRowRenderer(
 Aircraft.class, new AircraftRowRenderer());

The RowRenderer base implementation is attached to this page and can be downloaded here:

 File Modified

 RowRenderer.java
Row renderer base implementation.

 Oct 07, 2014 by Dirk
Lemmermann [Administrator]

3.4.8 Context Menu

Introduction

Code Example

Introduction

There are two ways to register a context menu with the graphics view. The standard way by calling GraphicsBase.setContextMenu(ContextMe
 or by registering a context menu callback by calling . The advantage of the second option is thatnu) GraphicsBase.setContextMenuCallback()

a parameter object of type will be passed to the callback method. This paramter object contains the most relevantContextMenuParameter
parameters that most context menus will require in order to let the user perform some kind of action on the graphics view.

Please note that a context menu callback will have precedence over a standard context menu.

https://flexgantt.atlassian.net/wiki/download/attachments/492288/RowRenderer.java?api=v2

Code Example

The following snippet shows an example of a context menu callback implementation. Here we simply add a menu item for each activity that was
found at the mouse location where the context menu was requested by the user.

Context Menu Callback

GraphicsBase<?> graphics = ganttChart.getGraphics();
graphics.setContextMenuCallback(param -> {
 ContextMenu menu = new ContextMenu();
 for (ActivityRef<?> ref : param.getActivities()) {
 Activity activiy = ref.getActivity();
 MenuItem item = new MenuItem("Move " + activity.getName());
 item.setOnAction(evt -> moveActivity(activity);
 menu.getItems().add(item);
 }
 return menu;
});

3.6 Timeline

Navigation
Zooming
Scrolling
TimeTracker
Visible Time Interval

The timeline control is a container for the and the . It is displayed above the control and provides several methods forDateline Eventline Graphics
scrolling and zooming, both of which can be done with or without animation. The timeline also keeps track of the current time (see).TimeTracker

Navigation

The timeline is used to navigate through time. It provides methods to jump to the current time or a given time. It can be requested to show a
specific time unit ("show days"), or a time range.

Method Description

showNow()

showNow(boolean center)

Changes the start time of the in such a way that the current time (as already stored intimeline model
the) will be displayed either on the left edge of the or right in the middle.TimelineModel dateline

showTime(Instant time)

showTime(Instant time,
boolean center)

Changes the start time of the in such a way that the given time timeline model will be displayed either
on the left edge of the or right in the middle.dateline

showRange(Instant start,
Instant end)

showRange(Instant start,
Duration duration)

showRange(TimeInterval range)

Changes the start time and the "millis per pixel" value of the in such a way that thetimeline model
given time range will become fully visible in the .dateline

showTemporalUnit(TemporalUnit
unit, double width)

Changes the start time and the "millis per pixel" value of the timeline model in such a way that the
given time unit will be used in the dateline. Each cell in the will be as wide as the given width.dateline

The methods above can be executed with or without animation. This animation can be controlled via the help of two properties: moveAnimated a
nd moveDuration. The appropriate getter and setter methods for these properties are available on Timeline.

Zooming

The timeline is responsible for managing anything related to zooming. The user can press the + / - keys to increase the zoom level by a specific
zoom factor or he can select a time interval via a "lasso" by dragging the mouse and holding down the SHIFT key. The result will be a selected
time interval which is stored in the read-only property . The timeline listens for changes to this property and willselectedTimeInterval
automatically try to display the selected time interval across the entire available width, ultimately causing a zoom in operation.

Method Description

zoomIn()

zoomOut()

Makes the timeline modify the timeline model in such a way that the resulting visible time range will
be the current time range multiplied by / divided by the current zoom factor.

zoom(double factor, boolean
zoomIn, Instant frozenTime)

Performs a zoom operation with the given zoom factor (either zoom in or out). The timeline will try to
keep the given "frozen" time at its current location. This kind of behaviour is very useful for a
pinch-based zoom, where the UI zooms "into" a specific time.

setZoomLassoEnabled(boolean);

boolean isZoomLassoEnabled();

Controls the availability of the zoom lasso.

Just like the moving operations the zoom operations can also be executed in an animated or non-animated way. To control this the two properties
 and are available.zoomAnimated zoomDuration

Another property is used to fine-tune the zooming behaviour as some applications prefer to either keep the start time, the end time, or the center
time while zooming. For this the application can set the property. Possible values of this enum are , zoomMode KEEP_START_TIME KEEP_END

, or ._TIME CENTER

Scrolling

The timeline supports scrolling to the left and right in two different speeds.

Method Description

scrollLeft()

scrollLeftFast()

Changes the start time property of the timeline model in such a way that the dateline will end up starting with an earli
 time.er

scrollRight()

scrollRightFast()

Changes the start time property of the timeline model in such a way that the dateline will end up starting with a tilater
me.

These methods can be invoked by the user via the and keys. Scrolling will be fast if the user presses + -

 at the same time.SHIFT

It should be noted that the timeline in cooperation with the dateline can only make a best-effort attempt at fulfillng these requests as
they depend on the availability of dateline resolutions in the dateline model.

TimeTracker

The timeline control is responsible for tracking time. This means that it updates the property now of the underlying timeline model. The timeline
implements methods for starting and stopping time tracking, however the actual update of now will be delegated to a time tracker class.

Method Description

startTimeTracking()

stopTimeTracking()

Starts and stops time tracking. These methods invoke the equivalent methods on the class.TimeTracker

timeTrackerProperty()

setTimeTracker(TimeTracker
tracker)

TimeTracker
getTimeTracker()

The property and its getter and setter methods. The default (uses the systemtime tracker time tracker
time) can be replaced with a custom one.

Visible Time Interval

Two read-only properties are keeping track of the earliest and latest times shown by the timeline . They are
called and and the methods , ,visibleStartTime visibleEndTime getVisibleStartTime() getVisibleEndTime()
and can be used to work with them.getVisibleDuration()

3.5.1 Timeline Model

Introduction
Start Time & Millis Per Pixel
Now Time / Now Location
Time & Coordinate Calculations
The Horizon
Highest & Lowest Temporal Unit

Introduction

The timeline uses a model of type . This model provides the most important parameters for the timeline and the dateline in orderTimelineModel
for them to work properly. The timeline model can by typed for different temporal units. ships with a and FlexGanttFX ChronoUnitTimelineModel
a .SimpleUnitTimelineModel

Start Time & Millis Per Pixel

The two most important properties of the are the and the (MPP) properties. The start time determinesTimelineModel startTime millisPerPixel
the first visible time in the Gantt chart while the current width of the timeline in combination with the MPP value determine the last visible time and
hence the visible time range. Increasing the MPP value will cause the timeline to show a larger time range while reducing this value will result in a
shorter time range. The methods found in the Timeline class for showing a time, scrolling to a time, zooming into a range are all playing with these
two variables to achieve their purpose. The following table lists the methods related to these properties:

Method Description

ObjectProperty<Instant>
startTimeProperty();

setStartTime(Instant time);

Instant getStartTime();

Stores, sets, and retrieves the current time, the first visible time in the Gantt chart.start

The earliest possible start time can be restricted via the properhorizonStartTime
ty.

DoubleProperty millisPerPixel();

setMillisPerPixel(double mpp);

double getMillisPerPixel();

Stores, sets, and retrieves the millis per pixel value (mpp).

Now Time / Now Location

Gantt charts often have a requirement to mark the "current" time. This time can either be the system time () or anjava.time.Instant.now()
arbitrary value controlled by the application. The latter is often the case in software that runs some kind of simulation and the Gantt chart is used
to track the simulation time. To support these use cases the timeline model defines a property called .now

The value of now is usually updated by a that can be controlled via the .time tracker timeline

Method DescriptionDesDesdf

ObjectProperty<Instant>
nowProperty();

void setNow(Instant
now);

Instant getNow();now

Stores, sets, and retrieves the current time.

ReadOnlyDoubleProperty
nowLocation();

double
getNowLocation();

Stores and retrieves the location of the current time. The now location is calculated by the model based on
the start time, and the millis per pixel value.

Time & Coordinate Calculations

The primary purpose of the timeline model is to convert time into a location and vice versa. For this the model provides several methods:

Method DescriptionD

double calculateLocationForTime(Instant); Returns the x coordinate for the given time.

Instant
calculateTimeForLocation(double);

Returns the time for the given x coordinate.

The Horizon

Scheduling applications often work with a horizon, defined by an earliest and latest time. These times might be based on the loaded dataset (min /
max calculation of the start and end times of the activities) or the planning horizon (Q1, Q2, Q3, Q4). Setting the values of and horizonStartTime

ensures that the user will not be able to scroll to a time outside the horizon.horizonEndTime

Highest & Lowest Temporal Unit

Not all applications require all available units of a temporal unit. for example defines units for nanos untiljava.time.temporal.ChronoUnit
millennia. The and the property enable the application to restrict the unit range to something morehighestTemporalUnit lowestTemporalUnit
sensible, e.g. hours to months.

3.5.2 Time Tracker

Introduction

Example

The default value of mpp is 24 * 60 * 60 * 1000 / 30. This results in days having
the width of 30 pixels.

This property is a read-only property as the now is always dependent on the value of thelocation
now . The location can only changed by changing now itself.time

Introduction

A time tracker is used to update the property of the . In most cases the time "now" will be equivalent to the system time but innow TimelineModel
simulation software this might not be the case. The time tracker is used by the and can be replaced by calling timeline Timeline.setTimeTracker(

. However, a default tracker is already installed and can be started by calling .TimeTracker) Timeline.startTimeTracking()

Example

The following is the entire code of the default time tracker class.

TimeTracker

/**
 * Copyright (C) 2014 - 2016 Dirk Lemmermann Software & Consulting
(dlsc.com)
 *
 * This file is part of FlexGanttFX.
 */
package com.flexganttfx.view.timeline;

import java.time.Instant;
import java.util.logging.Level;

import com.flexganttfx.core.LoggingDomain;
import com.flexganttfx.model.timeline.TimelineModel;

import javafx.application.Platform;
import javafx.beans.property.ReadOnlyObjectProperty;
import javafx.beans.property.ReadOnlyObjectWrapper;

/**
 * A time tracker can be used to update the property
 * {@link TimelineModel#nowProperty()}. In most cases the time "now" will
be
 * equivalent to the system time but in simulations this might not be the
case.
 * The time tracker can be used in combination with the {@link
TimelineModel} by
 * binding the {@link TimelineModel#nowProperty()} to the
 * {@link TimeTracker#timeProperty()}.
 *
 * @since 1.0
 */
public class TimeTracker extends Thread {

 private boolean running = true;

 private long delay = 1000;

 private boolean stopped;

 /**
 * Constructs a new tracker.

 *
 * @since 1.0
 */
 public TimeTracker() {
 setName("Time Tracker");
 setDaemon(true);
 }

 private final ReadOnlyObjectWrapper<Instant> time = new
ReadOnlyObjectWrapper<>(
 this, "time", Instant.now());

 public final ReadOnlyObjectProperty<Instant> timeProperty() {
 return time.getReadOnlyProperty();
 }

 public final Instant getTime() {
 return time.get();
 }

 /**
 * Returns the delay in milliseconds between updates of
 * {@link TimelineModel#nowProperty()}. The default is 1000 millis.
 *
 * @return the default delay between update calls
 * @since 1.0
 */
 public final long getDelay() {
 return delay;
 }

 /**
 * Sets the delay between updates of {@link
TimelineModel#nowProperty()}.
 * The default is 1000 millis.
 *
 * @param millis
 * the new delay
 * @throws IllegalArgumentException
 * if the delay is zero or smaller
 * @since 1.0
 */
 public final void setDelay(long millis) {
 if (millis <= 0) {
 throw new IllegalArgumentException(
 "delay must be larger than zero but was" + millis);
//$NON-NLS-1$
 }

 this.delay = millis;
 }

 /**

 * Starts the tracking of the time.
 *
 * @since 1.0
 */
 public final void startTracking() {
 if (stopped) {
 throw new IllegalStateException(
 "Time tracker has already been stopped and can not be
started again.");
 } else {
 running = true;
 start();
 }
 }

 @Override
 public void run() {
 while (running) {
 Platform.runLater(() -> time.set(getNow()));
 try {
 Thread.sleep(delay);
 } catch (InterruptedException e) {
 LoggingDomain.CONFIG.log(Level.WARNING,
 "problem in update thread", e); //$NON-NLS-1$
 }
 }
 }

 /**
 * Stops the tracking of the time.
 *
 * @since 1.0
 */
 public final void stopTracking() {
 stopped = true;
 running = false;
 }

 /**
 * Override to return the instant that will be set as "now" on the
timeline
 * model. The default implementation uses {@link Instant#now()}.
 *
 * @see TimelineModel#setNow(Instant)
 *
 * @return the "now" instant
 */
 protected Instant getNow() {

 return Instant.now();
 }
}

3.7 Dateline
Introduction
Scale Resolutions
Primary Temporal Unit
Timezone
Selection Model
Hover Time Interval
Events
Cell Factory

Introduction
The dateline is a control that displays the actual dates (Mo, Tu, We, ...) in cells that are placed on one or more rows. The dateline is timezone
aware, keeps track of currently selected time intervals and the current hover time interval. It also fires events whenever the visible time range
changes (e.g. after scrolling left or right).

Scale Resolutions

The dateline can display one to five rows. Each row is called a "dateline scale" and each one of these scales displays a "resolution". A resolution
is comprised of a temporal unit (e.g. day, week, month), a pattern for formatting, and a quantity. The quantity is needed to specify resolutions like
"5 minutes", "15 minutes", and so on. The entire list of resolutions that are currently shown by the dateline can be retrieved by calling getScaleRe

. solutions()

One example for a use of this method is given by the system layer . It calls this method in order to use the resolutions to calculateGridLinesLayer
the locations of the vertical grid lines. For this the class offers the methods to go to the beginning of a unit (e.g. theResolution truncate()
beginning of a day) and to go to the next unit (e.g. the next day). For more information on please go to the increment() Resolution dateline

 documentation.model

Primary Temporal Unit

A dateline with three scales could for example display the resolutions "month", "week", and "day". The smallest resolution "day" gets displayed at
the bottom of the dateline. The temporal unit that is used by this resolution is also called "primary temporal unit". The currentChronoUnit.DAYS
value of this unit is stored in the read-only property . The value of this property is used when querying activities from primaryTemporalUnit activit

. This way the repository can decide how fine-grained the result of its invocation will be or if certain activities will not be shown at all.y repositories

One example for a good use of the primary temporal unit is the class. It implements , which is an extension of WeekendCalendar Calendar Activi
. The purpose of the is to return the weekend days (Saturday, Sunday) for a given time interval. When it getstyRepository WeekendCalendar

invoked it will not return anything if the primary temporal unit is too large or too small. It makes no sense to return weekend information if the user
is currently looking at minutes or decades.

Timezone

The dateline needs to know for which timezone it is displaying the dates (e.g. EST or GMT). Hence it features the property . It iszoneIdProperty()
writable and can be set via . The value of this property can be made visible in the control by calling . setZoneId() setZoneId(true)

Selection Model

The dateline control allows the user to perform single or multiple selections of time intervals by clicking the primary mouse button while pressing
the shortcut modifier key (CTRL on Windows / Linux, Option on Mac). Whether single or multiple selection is supported depends on the value of s

.electionModeProperty()

Only those intervals can be selected that are currently visible in any one of the rows / scales. So if the dateline is currently showing weeks and
days then the user can only select an entire weeks or entire days. This list of selected intervals can be retrieved by calling getSelectedTimeInter

. vals()

Hover Time Interval

When the mouse cursor hovers over the dateline it also implies that it is hovering over a time interval. Depending on the resolution shown in the
dateline row / scale at the given mouse location the interval might be an entire week or a single day. Whatever it is, the interval will be stored in
the read-only property .hoverTimeIntervalProperty()

Events

Applications can listen to scrolling events fired by the dateline when they need to react to any changes in the currently visible time range.This is
done by passing an event listener to the method or by calling setOnVisibleRangeChanged() addEventListener(DatelineScrollingEvent.ANY,

.myListener)

Cell Factory
The dateline control is capable of displaying different types of temporal units. (Mon, Tue, Wed,) and (1, 2, 3, 4, ...) areChronoUnit SimpleUnit
supported by default. Each unit type has its own visual representation. To accomodate for this the dateline control delegates the creation of
dateline cells to a pluggable factory that was previously mapped to a specific temporal unit type.

Cell Factories

setCellFactory(SimpleUnit.class,
 unit -> new SimpleUnitDatelineCell());
setCellFactory(ChronoUnit.class,
 unit -> new ChronoUnitDatelineCell());

If a new temporal unit type needs to be displayed then a new factory needs to be registered in the same way.

3.6.1 Dateline Model

Introduction
Chrono Unit Dateline Model
Simple Unit Dateline Model
Timezones

Introduction
The dateline model provides the control with various pieces of information so that it can layout itself correctly.dateline

Resolutions - a resolution defines which temporal unit to show (e.g. hours) and how to format it. It also contains the information whether
it can be shown in a top, bottom, or middle scale. Each model usually defines a long list of such resolutions. The more resolutions are
defined the more flexible the dateline control becomes when it comes to zooming in and out.
Time Zones - The dateline control allows the user to switch between different time zones. The model defines which zones are available.
Scale Count - The dateline control is composed of a set of dateline (top, bottom, several middle scales). The model can be usedscales
to define the currently visible, the minimum and the maximum number of scales that the user can choose to see.
Temporal Units - The dateline control calls back onto the model to lookup the "next" temporal unit after it has either failed or succeeded
to create a scale for the current unit.

The dateline model is a typed model. FlexGanttFX ships with two specializations: and .ChronoUnitDatelineModel SimpleUnitDatelineModel

Chrono Unit Dateline Model

The class is a specialization for the temporal that is part of JDK 8. It requires scale resolutions of type ChronoUnitDatelineModel ChronoUnit C
. The following listing is the implementation of this model and illustrates how to define and add resolutions and also how thehronoUnitResolution

resolution is used to go to from one temporal unit to the next.

ChronoUnitDatelineModel

/**
 * Copyright (C) 2014 Dirk Lemmermann Software & Consulting (dlsc.com)

 *
 * This file is part of FlexGanttFX.
 */
package com.flexganttfx.model.dateline;

import static com.flexganttfx.model.dateline.Resolution.Position.BOTTOM;
import static com.flexganttfx.model.dateline.Resolution.Position.MIDDLE;
import static com.flexganttfx.model.dateline.Resolution.Position.ONLY;
import static com.flexganttfx.model.dateline.Resolution.Position.TOP;
import static java.time.temporal.ChronoUnit.CENTURIES;
import static java.time.temporal.ChronoUnit.DAYS;
import static java.time.temporal.ChronoUnit.DECADES;
import static java.time.temporal.ChronoUnit.HOURS;
import static java.time.temporal.ChronoUnit.MICROS;
import static java.time.temporal.ChronoUnit.MILLENNIA;
import static java.time.temporal.ChronoUnit.MILLIS;
import static java.time.temporal.ChronoUnit.MINUTES;
import static java.time.temporal.ChronoUnit.MONTHS;
import static java.time.temporal.ChronoUnit.SECONDS;
import static java.time.temporal.ChronoUnit.WEEKS;
import static java.time.temporal.ChronoUnit.YEARS;
import java.time.temporal.ChronoUnit;

public final class ChronoUnitDatelineModel extends
DatelineModel<ChronoUnit> {

 public ChronoUnitDatelineModel() {
 addResolution(new ChronoUnitResolution(MILLIS, "EEEE, dd. MMMM YYYY,
HH:mm:ss:SSS", 1, TOP, ONLY));
 addResolution(new ChronoUnitResolution(MILLIS, "EEEE, dd.MM.YY,
HH:mm:ss:SSS", 1, TOP, ONLY));
 addResolution(new ChronoUnitResolution(MILLIS, "E, dd.MM.YY,
HH:mm:ss:SSS", 1, TOP, ONLY));
 addResolution(new ChronoUnitResolution(MILLIS, "dd.MM.YY, HH:mm:ss:SSS",
1, TOP, ONLY));
 addResolution(new ChronoUnitResolution(MILLIS, "dd.MM, HH:mm:ss:SSS", 1,
TOP));
 addResolution(new ChronoUnitResolution(MILLIS, "SSS", 1, BOTTOM));
 addResolution(new ChronoUnitResolution(MILLIS, "SSS", 5, BOTTOM));
 addResolution(new ChronoUnitResolution(MILLIS, "SSS", 10, BOTTOM));
 addResolution(new ChronoUnitResolution(MILLIS, "SSS", 15, BOTTOM));
 addResolution(new ChronoUnitResolution(SECONDS, "EEEE, dd. MMMM YYYY,
HH:mm:ss", 1, TOP, ONLY));
 addResolution(new ChronoUnitResolution(SECONDS, "EEEE, dd.MM.YY,
HH:mm:ss", 1, TOP, ONLY));
 addResolution(new ChronoUnitResolution(SECONDS, "E, dd.MM.YY, HH:mm:ss",
1, TOP, ONLY));
 addResolution(new ChronoUnitResolution(SECONDS, "dd.MM.YY, HH:mm:ss", 1,
TOP, ONLY));
 addResolution(new ChronoUnitResolution(SECONDS, "dd.MM, HH:mm:ss", 1,
TOP));
 addResolution(new ChronoUnitResolution(SECONDS, "HH:mm:ss", 1, MIDDLE));

 addResolution(new ChronoUnitResolution(SECONDS, "ss", 1, BOTTOM));
 addResolution(new ChronoUnitResolution(SECONDS, "ss", 5, BOTTOM));
 addResolution(new ChronoUnitResolution(SECONDS, "ss", 10, BOTTOM));
 addResolution(new ChronoUnitResolution(SECONDS, "ss", 15, BOTTOM));
 addResolution(new ChronoUnitResolution(MINUTES, "EEEE, dd. MMMM YYYY,
HH:mm", 1, TOP, ONLY));
 addResolution(new ChronoUnitResolution(MINUTES, "EEEE, dd.MM.YY, HH:mm",
1, TOP, ONLY));
 addResolution(new ChronoUnitResolution(MINUTES, "E, dd.MM.YY, HH:mm", 1,
TOP, ONLY));
 addResolution(new ChronoUnitResolution(MINUTES, "dd.MM.YY, HH:mm", 1,
TOP, ONLY));
 addResolution(new ChronoUnitResolution(MINUTES, "dd.MM, HH:mm", 1, TOP));
 addResolution(new ChronoUnitResolution(MINUTES, "HH:mm", 1, MIDDLE));
 addResolution(new ChronoUnitResolution(MINUTES, "mm", 1, BOTTOM));
 addResolution(new ChronoUnitResolution(MINUTES, "mm", 5, BOTTOM));
 addResolution(new ChronoUnitResolution(MINUTES, "mm", 10, BOTTOM));
 addResolution(new ChronoUnitResolution(MINUTES, "mm", 15, BOTTOM));
 addResolution(new ChronoUnitResolution(HOURS, "EEEE, dd. MMMM YYYY,
HH:mm", 1, TOP, ONLY));
 addResolution(new ChronoUnitResolution(HOURS, "EEEE, dd. MMMM YYYY", 1,
TOP));
 addResolution(new ChronoUnitResolution(HOURS, "EEEE, dd.MM.YY, HH:mm", 1,
TOP, BOTTOM, ONLY));
 addResolution(new ChronoUnitResolution(HOURS, "E, dd.MM.YY, HH:mm", 1,
TOP, ONLY));
 addResolution(new ChronoUnitResolution(HOURS, "dd.MM.YY, HH:mm", 1, TOP,
ONLY));
 addResolution(new ChronoUnitResolution(HOURS, "dd.MM, HH:mm", 1, TOP,
ONLY));
 addResolution(new ChronoUnitResolution(HOURS, "H:mm", 1, MIDDLE,
BOTTOM));
 addResolution(new ChronoUnitResolution(HOURS, "H:mm", 3, MIDDLE,
BOTTOM));
 addResolution(new ChronoUnitResolution(HOURS, "H:mm", 6, MIDDLE,
BOTTOM));
 addResolution(new ChronoUnitResolution(DAYS, "EEEE d. MMMM YYYY", 1, TOP,
ONLY));
 addResolution(new ChronoUnitResolution(DAYS, "EEEE d. MMMM YY", 1, TOP,
ONLY));
 addResolution(new ChronoUnitResolution(DAYS, "E, d. MMMM YY", 1, TOP,
ONLY));
 addResolution(new ChronoUnitResolution(DAYS, "E, d. MMMM", 1, TOP,
ONLY));
 addResolution(new ChronoUnitResolution(DAYS, "E, dd.MM.YY", 1, TOP,
ONLY));
 addResolution(new ChronoUnitResolution(DAYS, "EEEE dd", 1, MIDDLE,
BOTTOM));
 addResolution(new ChronoUnitResolution(DAYS, "E dd", 1, MIDDLE, BOTTOM));
 addResolution(new ChronoUnitResolution(DAYS, "dd.MM", 1, MIDDLE,
BOTTOM));
 addResolution(new ChronoUnitResolution(DAYS, "dd", 1, BOTTOM));
 addResolution(new ChronoUnitResolution(WEEKS, "'W' w, EEEE d. MMMM YY",

1, TOP, ONLY));
 addResolution(new ChronoUnitResolution(WEEKS, "'W' w, d. MMMM YY", 1,
TOP, ONLY));
 addResolution(new ChronoUnitResolution(WEEKS, "'W' w, d. MMMM", 1));
 addResolution(new ChronoUnitResolution(WEEKS, "'W' w, E, dd.MM.YY", 1,
TOP, ONLY));
 addResolution(new ChronoUnitResolution(WEEKS, "'W' w, dd.MM.YY", 1, TOP,
ONLY));
 addResolution(new ChronoUnitResolution(WEEKS, "'W' w, dd.MM", 1,
BOTTOM));
 addResolution(new ChronoUnitResolution(WEEKS, "'W' w", 1, MIDDLE,
BOTTOM));
 addResolution(new ChronoUnitResolution(MONTHS, "MMMM YYYY", 1, TOP,
ONLY));
 addResolution(new ChronoUnitResolution(MONTHS, "MMMM", 1, MIDDLE,
BOTTOM));
 addResolution(new ChronoUnitResolution(MONTHS, "MMM", 1, MIDDLE,
BOTTOM));
 addResolution(new ChronoUnitResolution(MONTHS, "M", 1, MIDDLE, BOTTOM));
 addResolution(new ChronoUnitResolution(YEARS, "YYYY", 1));
 addResolution(new ChronoUnitResolution(DECADES, "YYYY", 1));
 addResolution(new ChronoUnitResolution(CENTURIES, "YYYY", 1));
 addResolution(new ChronoUnitResolution(MILLENNIA, "YYYY", 1));
 }

 @Override
 public final ChronoUnit nextTemporalUnit(ChronoUnit unit) {
 switch (unit) {
 case NANOS:
 return MICROS;
 case MICROS:
 return MILLIS;
 case MILLIS:
 return SECONDS;
 case SECONDS:
 return MINUTES;
 case MINUTES:
 return HOURS;
 case HOURS:
 return DAYS;
 case DAYS:
 return WEEKS;
 case WEEKS:
 return MONTHS;
 case MONTHS:
 return YEARS;
 case YEARS:
 return DECADES;
 case DECADES:
 return CENTURIES;
 case CENTURIES:
 return MILLENNIA;
 default:

 /*
 * We are ignoring HALF DAYS.
 */
 return null;

 }
 }
}

Simple Unit Dateline Model

The class is a specialization for the temporal which ships with FlexGanttFX. It requires scale resolutionsSimpleUnitDatelineModel SimpleUnit
of type . The implementation of this model class below shows why the unit is called "simple".SimpleUnitResolution

SimpleUnitDatelineModel

 /**
 * Copyright (C) 2014 Dirk Lemmermann Software & Consulting (dlsc.com)
 *
 * This file is part of FlexGanttFX.
 */
package com.flexganttfx.model.dateline;

import com.flexganttfx.model.util.SimpleUnit;

public final class SimpleUnitDatelineModel extends
DatelineModel<SimpleUnit> {

 public SimpleUnitDatelineModel() {
 for (SimpleUnit unit : SimpleUnit.values()) {
 addResolution(new SimpleUnitResolution(unit, "", 1));
 }
 }

 @Override
 public SimpleUnit nextTemporalUnit(SimpleUnit unit) {
 int ordinal = unit.ordinal();
 if (ordinal < SimpleUnit.values().length - 1) {
 return SimpleUnit.values()[ordinal + 1];
 }
 return null;
 }
}

Timezones

The dateline model manages a list of zone IDs, which is used by the UI to create menu items for each ID. This way the user can easily toggle
between them. The default list is set up in the class like this:DatelineModel

DatelineModel

/**
 * Constructs a new model and populates the list of available zone IDs.
 */
protected DatelineModel() {
 addZoneId("Europe/Berlin");
 addZoneId("America/New_York");
 addZoneId("Australia/Darwin");
 addZoneId("Australia/Sydney");
 addZoneId("America/Argentina/Buenos_Aires");
 addZoneId("Africa/Cairo");
 addZoneId("America/Anchorage");
 addZoneId("America/Sao_Paulo");
 addZoneId("Asia/Dhaka");
 addZoneId("Africa/Harare");
 addZoneId("America/St_Johns");
 addZoneId("America/Chicago");
 addZoneId("Asia/Shanghai");
 addZoneId("Africa/Addis_Ababa")
 addZoneId("Europe/Paris");
 addZoneId("America/Indiana/Indianapolis");
 addZoneId("Asia/Kolkata");
 addZoneId("Asia/Tokyo");
 addZoneId("Pacific/Apia");
 addZoneId("Asia/Yerevan");
 addZoneId("Pacific/Auckland");
 addZoneId("Asia/Karachi");
 addZoneId("America/Phoenix");
 addZoneId("America/Puerto_Rico");
 addZoneId("America/Los_Angeles");
 addZoneId("Pacific/Guadalcanal");
 addZoneId("Asia/Ho_Chi_Minh");
}

3.8 Eventline
Introduction
Date & Time Formatting
Cursor: Location & Time
Marked Time Interval

Introduction
The eventline is a control that displays time cursors: time at mouse location, selected time interval. This control is part of the andTimeline
displayed at the bottom of it.

Please note that the currently used timezone is managed by the , not the model.Dateline control

Date & Time Formatting

Each application has its own requirements regarding the format in which dates and times are displayed. Accordingly the eventline features a date
and time formatter that can be replaced by calling . Formatter instances can be looked up by calling static methods onsetDateTimeFormatter()
the class, e.g. .DateTimeFormatter DateTimeFormatter.ISO_LOCAL_DATE_TIME

Cursor: Location & Time

The eventline keeps track of the mouse cursor location when the mouse hovers over the or the control. The location is stored intimeline graphics
the read-only . Whenever the location changes the eventline will also update the value of .cursorLocationProperty() cursorTimeProperty()
These two properties make the eventline the perfect provider for cursor information for the entire application.

Marked Time Interval

Whenever the user edits an activity the eventline will display the new time interval occupied by the activity. This interval is stored in the markedTi
. When its' value changes the eventline will display two additional time cursors, one for the beginning of the time intervalmeIntervalProperty()

and one for its' end.

4. Model

The following table lists the most important model classes for populating a with data.Gantt chart

Class Desription

Activity Activities represent objects that will be displayed below the timeline in the graphics view of the Gantt chart control.
Activities can be added to a specific layer on a row.

ActivityRef An activity reference is used to precisely identify the location of an activity where the location is a combination of row, layer,
and the activity itself.

ActivityLink An activity link can be used to express a dependency between two activities.

ActivityRepository Activity repositories are used by rows to store and lookup activities.

Row A (model) row object is used to store the activities found on a (visual) row of the Gantt chart.

Layer Layers are used to create groups of activities.

LinesManager A lines manager is used to control the layout of (inner) lines inside a row.

Layout Each row and each inner line of a row are associated with a layout. The layout influences several aspects during rendering
and editing of activities. Additionally several of the system layers used for drawing the row background also utilize the
layout information.

Calendar A calendar is an extension of an activity repository with the addition of a name and a visibility property.

4.1 Activity

Introduction
Activity Types

Introduction

Activities represent objects that will be displayed below the timeline in the of the control. Activities can be added to agraphics view Gantt chart
specific layer on a row by calling .Row.addActivity(Layer, Activity)

Activity Types

The following table lists all available activity types.

Activity Interface Base Implementation Description & Attributes Editable

Activity ActivityBaseBase The simplest form of an activity.

id (String)
name (String)
startTime (Instant)
endTime (Instant)

ChartActivity ChartActivityBaseBase These activities can be displayed in a .chart layout

id (String)
name (String)
startTime (Instant)
endTime (Instant)
chartValue (double)

CompletableActivity CompletableActivityBase These activities carry a percentage value (completion).

id (String)
name (String)
startTime (Instant)
endTime (Instant)
percentageComplete (double)

HighLowChartActivity HighLowChartActivityBase These activities can be displayed in a .chart layout

id (String)
name (String)
startTime (Instant)
endTime (Instant)
high (double)
low (double)

MutableActivity MutableActivityBase The simplest form of a mutable activity. The user can change
the start and end time of these activities.

id (String)
name (String)
startTime (Instant)
endTime (Instant)

MutableChartActivity MutableChartActivityBase These activities can be displayed in a . The userchart layout
can change the start and end time and the chart value of these
activities.

id (String)
name (String)
startTime (Instant)
endTime (Instant)
chartValue (double)

MutableCompletableActivity MutableCompletableActivityBase These activities carry a percentage value (completion). The
user can change the start and end time and the percentage
complete value of these activities.

id (String)
name (String)
startTime (Instant)
endTime (Instant)
percentageComplete (double)

MutableHighLowChartActivity MutableHighLowChartActivityBase These activities can be displayed in a . chart layout The user
can change the start and end time and the high and low value
of these activities.

id (String)
name (String)
startTime (Instant)
endTime (Instant)
high (double)
low (double)

Only mutable activity types can be edited interactively by the user. Any activity type that is not mutable can only be used for read-only
purposes.

4.1.1 ChartActivity

A chart activity is an add-on interface for . It needs to be implemented by activities that want to participate in a . The interfaceactivities ChartLayout
adds a chart value to the activity. The image below shows an example of a chart layout laying out one chart activity per day.

4.1.2 CompletableActivity

A completable activity is an activity that carries a "percentage complete" value between 0 and 100%. Completable activities are drawn with a "com
". This renderer fills the background of the activity based on the percentage complete value. The image below showspletable activity bar renderer

an example.

4.1.3 HighLowChartActivity

A high low chart activity carries two extra attributes: high and low. These values are used by the to position them appropriately. OneChartLayout
example for a good use case for high low activities are candlestick charts (e.g. stocks open / high / low / close price).

4.2 ActivityRef
An activity reference is used to precisely identify the "location" of an activity. A location is the combination of row, layer, and the activity itself. As
the same activity can be located on multiple rows and or multiple layers at the same time it is often necessary to work with an activity reference
instead of only the activity.

4.3 ActivityLink
An activity link can be used to model any kind of dependency between two . In project planning applications a link would express aactivities
predecessor / successor relationship between two tasks, for example "task A must be finished before task B can begin". In other domains a link
might simply express that two or more activities need to be scheduled together and that moving one of them requires all others to be moved, too.
The image below shows an example of such a link.

A link can be added to the Gantt chart by calling GanttChart.getLinks().add(myLink);

4.4 ActivityRepository

Introduction
Queries
Earliest / Latest Time Used
Updating Activities
Event Handling

Introduction

Activity repositories are used by rows to store and lookup activities. Each row by default owns an . This defaultIntervalTreeActivityRepository
repository can be replaced with a custom one, for example if your application requires a lazy loading strategy.

Queries

The most important functionality of any repository is the ability to query the repository for activities within a given time interval. For this purpose
the interface defines the method with these parameters:ActivityRepository getActivities()

Parameter Description

Layer layer Whenever the user scrolls left or right the row will query the repository several times. Once for each layer.

Instant
startTime

The start time of the time interval for which the row is querying activities.

Instant
endTime

The end time of the time interval for which the row is querying activities.

TemporalUnit
unit

The current value of the currently displayed by the . This is the unit shown at the bottom ofprimary temporal unit dateline
the , e.g. days. This parameter can be used to control how fine-grained the result will be. If we know that the user isdateline
currently looking at months then it might make sense to aggregate daily activities.

ZomeId
zoneId

The timezone shown by the row.

Earliest / Latest Time Used

Each repository implementation needs to be able to answer the question for the earliest and latest times used (earliest start time / latest end time
of any activity stored in the repository). This allows the UI to provide controls for easy navigation: "show earliest", "show latest". For this purpose
repositories need to implement the and methods.getEarliestTimeUsed() getLatestTimeUsed()

Updating Activities

Activities need to be removed (ActivityRef.detachFromRow()) from their repository they are being changed and addedbefore
back (ActivityRef.attachToRow()) they have been changed. This is the only way to ensure that a repository will always have its underlyingafter
data structure in synch with the activities. Example: the interval tree data structure only works properly if all its nodes are in their correct location.
This can only be guaranteed if the nodes are removed from the tree before they are being changed (otherwise the tree will not find them) and then
reinserted with their new value.

Event Handling

Activitiy repositories implement listener support so that the UI can update itself if the content of the repository changes. Interested parties can
attach handlers by calling or remove handlers by calling . The event class is called RepositoryEventaddEventHandler() removeEventHandler()
and it has three event types:

Event Type Description

ACTIVITY_ADDED An activity was added to the repository.

ACTIVITY_REMOVED An activity was removed from the repository.

REPOSITORY_CHANGED Something has changed the state of the repository.

Each one of these event types will normally trigger a redraw of the row to which the repository belongs.

4.4.1 IntervalTreeActivityRepository

The is an activity repository that is using one or more binary data structures for storing activities.InteralTreeActivityRepository interval tree

http://en.wikipedia.org/wiki/Interval_tree

4.4.2 ListActivityRepository

The is an using one or more list data structures to store . This repository can be configured toListActivityRepository activity repository activities
return different types of result iterators from its query method. The possible values are defined in .ListActivityRepository.IteratorType

Type Description

BINARY_ITERATOR Returns an iterator that performs a search to find the first activity to draw for a given time interval. It will thenbinary
iterate over all following activities until it finds an activity that starts after the given time interval.

LINEAR_ITERATOR Returns an iterator that performs a search to find the first activity to draw for a given time interval. It will thenlinear
iterate over all following activities until it finds an activity that starts after the given time interval.

SIMPLE_ITERATOR Returns an iterator that does not perform any search at all but will start returning activities immediately, no matter
whether they are currently located in the visible time interval of the Gantt chart or not. This iterator is used for rows with
only a few activities on them.

4.5 Row

Introduction
Type Arguments & Hierarchy
Properties

Introduction

A row object is used to store the found on a row of the . These activities are not stored directly on the row but in an activities Gantt chart activity
. The default repository is of type . can be placed on lines within the row. The row delegates thisrepository IntervalTreeActivityRepository Activities

work to a . The default manager is of type EqualLinesManager.LinesManager

This repository type is the repository type. It is also the repository for rows with a large number of intervals (hundreds).default preferred

This iterator is very useful when we want to make sure that the trailing text of an activity will still be shown
even if the activity has already scrolled out of the visible area.

Type Arguments & Hierarchy

Three type arguments are needed to define a row. The first one defines the type of the parent row, the second one defines the type of the children
rows, the third one defines the type of the activities shown on the row. The following is an example that defines a "building", that is part of a
factory. The building has machines in it. In the building row we are showing shifts.

Building.java

public class Building extends Row<Factory, Machine, Shift> {
}

A model like this would allow us to display a hierarchy in the Gant chart that might look like this:

Factory
Building 1
Building 2
Building 3

Machine A
Machine B
Machine B

Building 4
Machine C
Machine D

Properties

Each row has a set of properties.

Property Description

BooleanProperty expanded Controls whether the row will show its children rows or not.

DoubleProperty height The current height of the row.

DoubleProperty minHeight The minimum height of the row.

DoubleProperty maxHeight The maximum height of the row.

ObjectProperty<Layout> layout The used by the row. The default is .layout Gantt Layout

IntegerProperty lineCount The number of inner lines to show within the row.

ObjectProperty<LinesManager<A>>
linesManager

The used for controlling the lines, their location, their height, the placement oflines manager
the activities.

StringProperty name The name of the row, e.g. "Machine 1", "Building 1".

ReadOnlyObjectProperty parent<P> The parent row.

ObjectProperty<ActivityRepository>
repository

The repository used by the row to store the activities.

BooleanProperty showing A flag used to signal that the row is currently shown in the UI. This information can be used for
optimizing lazy loading strategies.

This is a read-only property that is managed internally and updated when a row gets
added to the list of children of another row.

http://flexganttfx.com/apidocs/com/flexganttfx/model/Row.html

ObjectProperty<Object> userObject An optional user object. Used to have a bridge to the business model.

ObjectProperty<ZoneId> zoneId The timezone represented by the row. Each row can be in its own timezone.

4.6 Layer
Layers are used to group together. Activities on the same layer are drawn at the same time (z-order). A layer has a name, an ID, it canactivities
be turned on / off, and their opacity can be changed. These changes have an impact on all activities on that layer. The ID of the layer is used for
drag and drop operations of activities between different Gantt charts. Dropped activities will be added to the layer with the same ID. The layer
name will be used as the default ID for newly created layers. The ID only needs to be changed if the same layer type will be used with different
names in different Gantt charts.

4.7 LinesManager

Introduction
Line Count
Interface
Equal Lines Manager
Auto Lines Manager

Introduction

A lines manager is used to control the layout of lines inside a . located on different lines do not overlap each other, except if the linesrow Activities
themselves overlap each other. Each line can have its own height and a location within the row. Each line can also have its own . By usingLayout
lines and it is possible to display activities that belong to the same row in different ways (see , ,).layouts ChartLayout AgendaLayout GanttLayout

Line Count

The actual number of lines on a row is stored on the property of the row. Simply call Row.setLineCount(int) to change its value. If thelineCount
line count is larger than 0 the row will call back on a its line manager to figure out where each line is located, how high it is, and which activity will
be placed on which row. Also the type of layout to use for each line will be retrieved from the manager.

Interface

The following table describes the interface methods.

Method Description

double getLineHeight(int lineIndex,
double rowHeight);

Returns the height of the line with the given index. The height can be computed on-the-fly
based on the given available row height.

int getLineIndex(A activity); Returns the line index for the given activity. This method places activities on different
lines.

Layout getLineLayout(int lineIndex); Returns the layout for the line with the given line index. Each line can have its own layout.

double getLineLocation(int lineIndex,
double rowHeight);

Returns the location of the line with the given index. The location can be computed
on-the-fly based on the given available row height.

Equal Lines Manager

The can be used to equally distribute line locations and line heights on a row. Each line will have the same height and theEqualLinesManager
lines will not overlap each other. While this behaviour will be provided by the manager it is still the responsibility of the application to place the
activities on different rows and to specify the layout for each line. This is also the reason why the methods and getLineHeight() getLineLocation

 are final while the methods and are not and can be overriden. () getLineLayout() getLineIndex()

Auto Lines Manager

The can be used to create a dynamic number of lines based on all inside a . This lines manager detectsAutoLinesManager activities repository

clusters of intersecting activities (start / end time intervals) and ensures that enough lines are available to place the activities in a non-overlapping
way. Below you are finding the complete source code of this manager class as a case study. Please note that the manager's methodlayout()
needs to be invoked from the outside. A good way to do this is to listen to events or even more fine grained ACTIVITY_CHANGE_FINISHED STA

events.RT/END_TIME_CHANGE_FINISHED

AutoLinesManager

/**
 * Copyright (C) 2014 Dirk Lemmermann Software & Consulting (dlsc.com)
 *
 * This file is part of FlexGanttFX.
 */
package com.flexganttfx.view.util;
import static java.util.Objects.requireNonNull;
import impl.com.flexganttfx.skin.util.Placement;
import impl.com.flexganttfx.skin.util.Resolver;
import java.time.Instant;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import com.flexganttfx.model.Activity;
import com.flexganttfx.model.ActivityRepository;
import com.flexganttfx.model.Layer;
import com.flexganttfx.model.LinesManager;
import com.flexganttfx.model.Row;
import com.flexganttfx.model.layout.EqualLinesManager;
import com.flexganttfx.view.graphics.GraphicsBase;
/**
 * A specialized {@link LinesManager} used for ensuring that activities
will not
 * overlap each other. This manager will create as many inner lines as
needed
 * and will calculate the placement of all activities on these lines.
 *
 * @param <R>
 * the type of the row that will be managed
 * @param <A>
 * the type of the activities that will be managed
 *
 * @since 1.2
 */
public class AutoLinesManager<R extends Row<?, ?, A>, A extends Activity>
 extends EqualLinesManager<R, A> {
 private Map<A, Placement<A>> placements;
 private GraphicsBase<R> graphics;
 /**
 * Constructs a new automatic lines manager. The constructor requires a
 * reference to the graphics view to lookup various parameters that are
 * needed when the manager queries the activity repository of the row
(e.g.
 * the currently displayed temporal unit and the list of layers).
 *
 * @param row

 * the managed row
 * @param graphics
 * the graphics view where the manager will be used
 *
 * @since 1.2
 */
 public AutoLinesManager(R row, GraphicsBase<R> graphics) {
 super(row);
 this.graphics = requireNonNull(graphics);
 layout();
 }
 /**
 * Returns the graphics view where the manager will be used.
 *
 * @return the graphics view
 * @since 1.2
 */
 public final GraphicsBase<R> getGraphics() {
 return graphics;
 }
 public final void layout() {
 R row = getRow();
 ActivityRepository<A> repository = row.getRepository();
 Instant st = repository.getEarliestTimeUsed();
 Instant et = repository.getLatestTimeUsed();
 if (st == null || et == null) {
 return;
 }
 List<A> allActivities = new ArrayList<>();
 for (Layer layer : graphics.getLayers()) {
 Iterator<A> activities = repository.getActivities(layer, st, et,
 graphics.getTimeline().getDateline()
 .getPrimaryTemporalUnit(), row.getZoneId());
 if (activities != null) {
 activities.forEachRemaining(activity -> allActivities
 .add(activity));
 }
 }
 placements = Resolver.resolve(allActivities);
 if (placements != null && !placements.isEmpty()) {
 Placement<A> p = placements.values().iterator().next();
 row.setLineCount(p.getColumnCount());
 } else {
 row.setLineCount(0);
 }
 }
 @Override
 public int getLineIndex(A activity) {
 if (placements != null) {
 Placement<A> placement = placements.get(activity);
 if (placement != null) {
 return placement.getColumnIndex();
 }

 }

 return -1;
 }
}

4.8 Layout
Introduction
Layout Types
Padding

Introduction
Each row and each inner line of a row are associated with a layout. The layout influences several aspects during rendering and editing of
activities. Additionally several of the system layers used to draw the row background also utilize the layout information. The layout can be set by
calling Row.setLayout(Layout) or when using inner lines by returning them via the of the row.lines manager

Layout Types

Three layout types are included in FlexGanttFX.

Layout Description

GanttLayout Lays out activities horizontally along the timeline. Positions are based on the start and end times of the activities.

AgendaLayout Lays out activities vertically along a "local time" scale (0 - 24 hours). This makes activities look like calendar entries.

ChartLayout Lays out activities as chart values. Activities can implement the or the ChartActivity HighLowChartActivity interface.

Padding

 All layout types have a property. It is used to create a visual gap at the top and bottom of each row / line.padding

4.8.1 Gantt Layout

4.8.2 Agenda Layout

Introduction
Start and End Time
Conflict Strategy

Introduction

The agenda layout class is used to lay out activities in a style similar to a regular calendar where a vertical scale will display hours. Activities are
used to represent appointments for a given day.

Activities shown in agenda layout might be rendered several times. This is, for example, the case when an activity spans several days.

Start and End Time

The agenda layout class allows you to specify a start and end time. This is used to restrict the time interval that is shown and in which the agenda
activities are laid out. In most cases it does not make sense to show the entire 24 hours but only the working hours, e.g. 8am until 6pm. Simply
call or to change the time range.AgendaLayout.setStartTime() setEndTime()

Conflict Strategy

Activities in an agenda layout might intersect with each other. The conflictStrategy property allows you how to handle these situations. The
following table lists the possible values.

Strategy Description

OVERLAPPING Conflicting agenda entries will be drawn on top of each other but with one of them being indented by a couple of pixels.

PARALLEL Conflicting agenda entries will be displayed in different columns within the same day.

4.8.3 Chart Layout

Introduction

Using the ChartLayout class results in activities being laid out as chart bars. A series of such bars can for example be used to form a capacity
profile. Activities of type will be placed on a zeroline between the minimum and the maximum value of the layout. The height of theChartActivity
chart activity will be based on the value returned by . Activities of type will appear as floatingChartActivity.getChartValue() HighLowChartActivity
bars. The layout also supports the definition of minor and major chart lines drawn in the row background.

The indentation amount can be controlled via the property on AgendaLayout.overlapOffset

Min & Max Value

The chart layout provides two properties that control the actual layout of the chart activities: and . These values have to beminValue maxValue
managed by the application, not the framework. They can be set by calling or . ChartLayout.setMinValue() ChartLayout.setMaxValue()

Major & Minor Ticks

A list of major and minor ticks is available on each chart layout instance. Values can be added to these lists in order to render value lines in the
background of the row. Example: the min value is equal to 0 the max value is equal to 100. Then it would make sense to define major ticks for the
values 50 and 100. Minor ticks might be at 10, 20, 30, 40, 60, 70, 80 and 90.

4.9 Calendar

Introduction
Weekend Calendar

Introduction
A calendar is an extension of an with the addition of a and a property. Calendars can be added to the whole activity repository name visibility Ga

 or to individual within the Gantt chart. Calendars are used for the background of rows. They can mark things like weekend days orntt chart rows
holidays. Calendar information is always shown as read-only. Activities returned by calendars have to be of type . They can notCalendarActivity
be edited interactively by the user.

Weekend Calendar
There already is a predefined calendar type included in . It is called and it is used to mark the weekend daysFlexGanttFX WeekendCalendar
(e.g. Saturday, Sunday).

The following listing shows the entire code of this calendar class. It can be used as a basis for your own calendars.

WeekendCalendar.java

/**
 * Copyright (C) 2014 Dirk Lemmermann Software & Consulting (dlsc.com)
 * This file is part of FlexGanttFX.
 */
package com.flexganttfx.model.calendar;
import static java.time.temporal.ChronoUnit.DAYS;
import static java.util.Objects.requireNonNull;
import java.time.DayOfWeek;
import java.time.Instant;
import java.time.ZoneId;

import java.time.ZonedDateTime;
import java.time.temporal.ChronoUnit;
import java.time.temporal.TemporalUnit;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.EnumSet;
import java.util.Iterator;
import java.util.List;

import javafx.event.Event;

import com.flexganttfx.model.Layer;
import com.flexganttfx.model.repository.RepositoryEvent;
/**
 * A calendar specialized on returning activities that represent weekend
days
 * (default: saturday, sunday). The days that are considered weekend days
can be
 * configured by calling {@link #setWeekendDays(DayOfWeek...)}.
 *
 * @since 1.0
 */
public class WeekendCalendar extends CalendarBase<WeekendCalendarActivity>
{
 private Instant lastStartTime = Instant.MIN;
 private Instant lastEndTime = Instant.MAX;
 private ZoneId lastZoneId;
 private List<WeekendCalendarActivity> entries;
 private EnumSet<DayOfWeek> weekendDays = EnumSet.of(DayOfWeek.SATURDAY,
 DayOfWeek.SUNDAY);
 /**
 * Constructs a new weekend calendar.
 *
 * @since 1.0
 */
 public WeekendCalendar() {
 super("Weekends");
 }
 /**
 * Sets the days of the week that are considered to be a weekend day. By
 * default {@link DayOfWeek#SATURDAY} and {@link DayOfWeek#SUNDAY} are
 * considered weekend days.
 *
 * @param days
 * the days of the week that are to be considered weekend days
 * @since 1.0
 */
 public void setWeekendDays(DayOfWeek... days) {
 requireNonNull(days);
 weekendDays.clear();
 weekendDays.addAll(Arrays.asList(days));
 Event.fireEvent(this, new RepositoryEvent(this));

 }
 /**
 * Returns the days of the week that are to be considered weekend days. By
 * default {@link DayOfWeek#SATURDAY} and {@link DayOfWeek#SUNDAY} are
 * considered weekend days.
 *
 * @return the days of the week used as weekend days
 * @since 1.0
 */
 public DayOfWeek[] getWeekendDays() {
 return weekendDays.toArray(new DayOfWeek[weekendDays.size()]);
 }
 @Override
 public Iterator<WeekendCalendarActivity> getActivities(Layer layer,
 Instant startTime, Instant endTime, TemporalUnit temporalUnit,
 ZoneId zoneId) {

 if (!(temporalUnit instanceof ChronoUnit)) {
 /*
 * We only work for ChronoUnit.
 */
 return Collections.emptyListIterator();
 }
 if (startTime.equals(lastStartTime) && endTime.equals(lastEndTime)
 && zoneId.equals(lastZoneId)) {
 /*
 * We already answered this query for the given time interval. Let's
 * return the result from last time.
 */
 if (entries != null) {
 return entries.iterator();
 }
 } else {
 ChronoUnit unit = (ChronoUnit) temporalUnit;
 /*
 * The time interval has changed. Find the weekends within the new
 * interval, but only if the user is currently looking at days or
 * weeks.
 */
 if (isSupportedUnit(unit)) {
 /* Lazily create list structure. */
 if (entries == null) {
 entries = new ArrayList<WeekendCalendarActivity>();
 } else {
 entries.clear();
 }
 ZonedDateTime st = ZonedDateTime.ofInstant(startTime, zoneId);
 ZonedDateTime et = ZonedDateTime.ofInstant(endTime, zoneId);
 findWeekends(st, et);
 lastStartTime = startTime;
 lastEndTime = endTime;
 lastZoneId = zoneId;
 return entries.iterator();

 }
 }

 return Collections.emptyListIterator();
 }
 /**
 * Determines if weekends will be shown for the given temporal unit.
 * By default we only show weekends for {@link ChronoUnit#DAYS} and
 * {@link ChronoUnit#WEEKS}. To support more units simply override
 * this method in a subclass.
 *
 * @param unit
 * the unit to check
 * @return true if weekend information will be shown in the Gantt chart
 * @since 1.0
 */
 protected boolean isSupportedUnit(TemporalUnit unit) {
 if (unit instanceof ChronoUnit) {
 ChronoUnit chronoUnit = (ChronoUnit) unit;
 switch (chronoUnit) {
 case DAYS:
 case WEEKS:
 return true;
 default:
 return false;
 }
 }
 return false;
 }
 private void findWeekends(ZonedDateTime st, ZonedDateTime et) {
 while (st.isBefore(et) || st.equals(et)) {
 if (weekendDays.contains(st.getDayOfWeek())) {
 st = st.truncatedTo(DAYS);
 entries.add(new WeekendCalendarActivity(st.getDayOfWeek()
 .toString(), Instant.from(st), Instant.from(st
 .plusDays(1)), st.getDayOfWeek()));
 }
 st = st.plusDays(1);
 }
 }

}

5. Styling (CSS)

FlexGanttFX ships with several custom controls. Each one of them has its own stylesheet. The following table lists the controls and their
associated CSS stylesheets.

Control Stylesheet

GanttChart gantt.css

GraphicsBase graphics.css

Timeline timeline.css

Dateline dateline.css

Eventline eventline.css

For convenience the files have been attached to this page.

 File Modified

 gantt.css Oct 07, 2014 by Dirk
Lemmermann [Administrator]

 graphics.css Oct 07, 2014 by Dirk
Lemmermann [Administrator]

 dateline.css Oct 07, 2014 by Dirk
Lemmermann [Administrator]

 eventline.css Oct 07, 2014 by Dirk
Lemmermann [Administrator]

 timeline.css Oct 07, 2014 by Dirk
Lemmermann [Administrator]

Download All

dateline.css

/*
 * dateline.css file of FlexGanttFX
 *
 * Copyright 2014 Dirk Lemmermann Software & Consulting
 */

.dateline {
 -fx-background-color: transparent;
}

.dateline-content {
}

.dateline-cell {

https://flexgantt.atlassian.net/wiki/download/attachments/491824/gantt.css?api=v2
https://flexgantt.atlassian.net/wiki/download/attachments/491824/graphics.css?api=v2
https://flexgantt.atlassian.net/wiki/download/attachments/491824/dateline.css?api=v2
https://flexgantt.atlassian.net/wiki/download/attachments/491824/eventline.css?api=v2
https://flexgantt.atlassian.net/wiki/download/attachments/491824/timeline.css?api=v2
https://flexgantt.atlassian.net/wiki/download/all_attachments?pageId=491824

 -fx-padding: 2 6 2 6;
 -fx-background-color: transparent;
 -fx-border-color:
 derive(-fx-base, 80%)
 linear-gradient(to bottom, derive(-fx-base,80%) 20%,
derive(-fx-base,-10%) 90%)
 derive(-fx-base, 10%)
 linear-gradient(to bottom, derive(-fx-base,80%) 20%,
derive(-fx-base,-10%) 90%),
 /* Outer border: */
 transparent -fx-box-border -fx-box-border transparent;
 -fx-border-insets: 0 1 1 0, 0 0 0 0;
 -fx-border-width: 0.083333em 0.083333em 0.083333em 0, 0.083333em
0.083333em 0.083333em;
}

.dateline-cell:hover {
 -fx-background-color: rgba(255.0,255.0,255.0,1.0) ;
 -fx-effect: innershadow(three-pass-box , rgba(0.0,0.0,0.0,0.6) , 5.0,
0.0 , 0.0 , 1.0);
}

.dateline-cell:pressed {
 -fx-background-color: rgba(255.0,255.0,255.0,0.8) ;
}

.dateline-cell > .text {
 -fx-alignment: center;
}

.dateline-cell > .text:hover {
}

.dateline-cell-simpel > .text {
 -fx-alignment: baseline-left;
}

.dateline-cell-selected {
 -fx-border-color: transparent transparent transparent -fx-box-border, red
transparent transparent transparent;
 -fx-border-width: 1.0, 3.0;
 -fx-border-insets: 0, 0.0 0.0 0.0 1.0;
}

.calendar-info {
 -fx-background-size: 8;
 -fx-background-image: url("calendar.png");
 -fx-background-position: right top;
 -fx-background-repeat: no-repeat;
}

.dateline-cell-last {

 -fx-border-width: 0.083333em 0 0.083333em 0.083333em, 0.083333em 0
0.083333em 0;
}

.dateline-cell-first {
 -fx-border-width: 0.083333em 0.083333em 0.083333em 0, 0.083333em 0
0.083333em 0;
}

.scale {
 -fx-background-color: transparent;

 /*
 * Scale height property is currently not supported. Timeline height and
 * tree table header height is now hard-wird and based on font size.
 */

 /* -fx-scale-height: 26.0; */
 -fx-cell-padding: 5;
}

.scale-top,

.scale-middle {
}
.scale-bottom {
}
.scale-only {
}

.centuries {}

.days {}

.decades {}

.half_days {}

.hours {}

.months {}

.micros {}

.millenia {}

.millis {}

.minutes {}

.nanos {}

.seconds {}

.weeks {}

.years {}

.scale-bottom > .saturday, .scale-bottom > .sunday {
 -fx-background-color: rgba(0,0,0,0.1) ;
}

.scale-bottom > .saturday:hover, .scale-bottom > .sunday:hover {
 -fx-background-color: rgba(0,0,0,0.1) ;
}

.january {}

.february {}

.march {}

.april {}

.may {}

.june {}

.july {}

.august {}

.september {}

.october {}

.november {}

.december {}

.am {
}

.pm {
 -fx-background-color: rgba(255.0,255.0,255.0,0.2);
}

.zone-id-label {
 -fx-background-color:
 linear-gradient(#ffd65b, #e68400),
 linear-gradient(#ffef84, #f2ba44),
 linear-gradient(#ffea6a, #efaa22),
 linear-gradient(#ffe657 0.0%, #f8c202 50.0%, #eea10b 100.0%),
 linear-gradient(from 0.0% 0.0% to 15.0% 50.0%,
rgba(255.0,255.0,255.0,0.9), rgba(255.0,255.0,255.0,0.0));
 -fx-background-radius: 0.0 0.0 0.0 0.0;
 -fx-background-insets: 0.0,1.0,2.0,3.0,0.0;
 -fx-text-fill: #654b00;
 -fx-font-weight: bold;
 -fx-padding: 6.0 10.0 6.0 10.0;

 -fx-effect: dropshadow(gaussian, rgba(0.0,0.0,0.0,0.5), 3.0, 0.5, 1.0,
1.0) ;
}

eventline.css

/*
 * eventline.css file of FlexGanttFX
 *
 * Copyright 2014 Dirk Lemmermann Software & Consulting
 */

 /*
 * The eventline uses the same style as the dateline cells. This style
 * is based on the default modena style of the table column headers.
 */
 .eventline {
 -fx-background-color: transparent;
 -fx-border-color:
 derive(-fx-base, 80%)
 linear-gradient(to bottom, derive(-fx-base,80%) 20%,
derive(-fx-base,-10%) 90%)
 derive(-fx-base, 10%)
 linear-gradient(to bottom, derive(-fx-base,80%) 20%,
derive(-fx-base,-10%) 90%),
 /* Outer border: */
 transparent -fx-box-border -fx-box-border transparent;
 -fx-border-insets: 0 1 1 0, 0 0 0 0;
 -fx-border-width: 0.083333em 0 0.083333em 0, 0.083333em 0 0.083333em 0;
 -fx-pref-height: 20px;
}

/*
 * The style used for the label that displays the time at the current
 * mouse cursor location.
 */
.time-cursor {
 -fx-font-size: 0.8em;
 -fx-text-fill: white;
 -fx-background-color: olivedrab;
 -fx-background-insets: 1 0 1 0;
 -fx-background-radius: 8;
 -fx-border-color: derive(olivedrab, -20%);
 -fx-border-radius: 8px;
 -fx-padding: 0 8 0 4;
}

/*
 * The style used for the two labels that display the start and end time
 * of the currently edited activity.

 */
.marked-time {
 -fx-font-size: 0.8em;
 -fx-text-fill: white;
 -fx-background-color: cornflowerblue;
 -fx-background-insets: 1 0 1 0;
 -fx-background-radius: 8;
 -fx-border-color: derive(cornflowerblue, -20%);
 -fx-border-radius: 8;
 -fx-padding: 0 8 0 8;
}

/*
 * Additional style to modify the appearance of the start time only.
 */
.marked-time-start {
}

/*
 * Additional style to modify the appearance of the end time only.

 */
.marked-time-end {
}

gantt.css

/*
 * gantt.css file of FlexGanttFX
 *
 * Copyright 2014 Dirk Lemmermann Software & Consulting
 */

/* Define global colors */
.root {
 -tree-table-row-background-even: white;
 -tree-table-row-background-odd: rgb(245,245,245);
}

/*
 * The split pane padding gets removed so that the tree table and the
 * graphics view both completely fill their sides.
 */
.split-pane {
 -fx-padding: 0.0;
}

.scroll-bar {
 -fx-opacity: .75;
}

/*
 * Row header cells are used in the row header column / the first column
 * of the tree table. The row header is used to display row numbers. The
user
 * can also resize rows via a mouse drag inside the cell.
 */
.row-header-cell {
 -fx-text-fill: black;
 -fx-background-color: derive(-fx-box-border,30.0%), linear-gradient(to
right, derive(-fx-base,-3.0%), derive(-fx-base,5.0%) 50.0%,
derive(-fx-base,-3.0%));
 -fx-border-color: transparent -fx-box-border -fx-box-border
-fx-box-border ;
}

/*
 * The tree table header has to have the same height as the timeline.
 * The height can depend on the location of the Gantt chart if it is
 * shown in a multi Gantt chart container.
 */

.gantt-tree-table-view .column-header,

.gantt-tree-table-view-first .column-header {
 -fx-pref-height: 60px;
}

/*
 * The table header is smaller when the Gantt chart is placed in the
 * middle or bottom of a multi Gantt chart context.
 */
.gantt-tree-table-view-middle .column-header,
.gantt-tree-table-view-last .column-header {
 -fx-pref-height: 24px;
}

/*
 * We do not need the vertical scrollbar of the table. We are styling it
 * away by setting its preferred width to zero. But we only do this if the
 * current display mode is "standard" (table and graphics are both
visible).
 */
.tree-table-view-standard-display-mode > .virtual-flow >
.scroll-bar:vertical,
.tree-table-view-standard-display-mode > .virtual-flow >
.scroll-bar:vertical .decrement-arrow ,
.tree-table-view-standard-display-mode > .virtual-flow >
.scroll-bar:vertical .increment-arrow {
 -fx-pref-width: 0.0;
}

/*
 * We do not need the horizontal scrollbar of the table. We are styling it
 * away by setting its preferred width to zero. We are replacing the
scrollbar
 * with our own scrollbar located hidden inside a HiddenSidesPane instance.
The
 * scrollbar only becomes visible if the user moves the mouse cursor close
to
 * the bottom edge of the table.
 */
.gantt-tree-table-view > .virtual-flow > .scroll-bar:horizontal,
.gantt-tree-table-view > .virtual-flow > .scroll-bar:horizontal
.decrement-arrow ,
.gantt-tree-table-view > .virtual-flow > .scroll-bar:horizontal
.increment-arrow {
 -fx-pref-height: 0.0;
}

/*
 * We like to center the column header text and use a normal font weight
 * for it.
 */
.gantt-tree-table-view .column-header .label {
 -fx-alignment: center;

}

.gantt-tree-table-view .column-header, .gantt-tree-table-view .filler {
 -fx-font-weight: normal;
}

/*
 * Alternating row colors inside the table. To make this work we have to
 * also set styles on tree table row cells. Quite nasty if you ask me.
 */
.tree-table-row-cell:even {
 -fx-background-color: -tree-table-row-background-even;
}

.tree-table-row-cell:odd {
 -fx-background-color: -tree-table-row-background-odd;
}

.gantt-tree-table-view > .virtual-flow > .clipped-container > .sheet >

.tree-table-row-cell:selected {
 -fx-background-color: -fx-selection-bar-non-focused;
}

.gantt-tree-table-view:focused > .virtual-flow > .clipped-container >

.sheet > .tree-table-row-cell:selected {
 -fx-background-color: -fx-selection-bar;
}

/*
 * We are adding depth to the table content and graphics content by placing
 * a shadow below the table header and the timeline. This gives the
impression
 * that the content of both really does slide "behind" these header
controls.
 */
.viewport-shadow {
 -fx-pref-height: 6;
 -fx-background-color: linear-gradient(from 0% 0% to 0% 100%,
rgba(0,0,0,.2), rgba(0,0,0,0));
}

/*
 * The style used by the buttons inside the layers control (layer up, down,
delete).
 */
.layers-navigate-button {
 -fx-background-insets: 0;
 -fx-border-insets: null;
 -fx-background-color: transparent;
 -fx-padding: 0;
}

/*

 * The column headers inside the layers control.
 */
.layers-table-header {
 -fx-padding: 0 0 5 0;
 -fx-text-fill: gray;
 -fx-font-weight: bold;
 -fx-alignment: center;
 -fx-border-color: transparent transparent lightgray transparent;
}

/*
 * The blank area on top of the graphics view that becomes visible
 * for Gantt charts in the middle or last position in a multi Gantt
 * chart container context.
 */
.graphic-view-header {
 -fx-background-color: -fx-body-color;
 -fx-border-color:
 derive(-fx-base, 80%)
 linear-gradient(to bottom, derive(-fx-base,80%) 20%,
derive(-fx-base,-10%) 90%)
 derive(-fx-base, 10%)
 linear-gradient(to bottom, derive(-fx-base,80%) 20%,
derive(-fx-base,-10%) 90%),
 /* Outer border: */
 transparent -fx-box-border -fx-box-border transparent;
 -fx-border-insets: 0 1 1 0, 0 0 0 0;
 -fx-border-width: 0.083333em 0.083333em 0.083333em 0, 0.083333em
0.083333em 0.083333em;
 -fx-pref-height: 0px;
}

/*
 * The container "around" the timeline and the graphics area.
 */
.timeline-graphics-wrapper {
 -fx-background-color: -fx-box-border, -fx-control-inner-background;
 -fx-background-insets: 0, 1;
 -fx-padding: 1;
}

.timeline-graphics-wrapper:focused {
 -fx-background-color: -fx-faint-focus-color, -fx-focus-color,
-fx-control-inner-background;
 -fx-background-insets: -2, -0.3, 1;
}

/*
 * The time slider is used to scroll the timeline to the left or right.
 * It becomes visible when the user moves the mouse cursor close to the
 * bottom edge of the graphics view.
 */
.time-slider {

 -fx-opacity: .75;
 -fx-background-radius: 0.0;
 -fx-border-color: null;
 -fx-border-radius: 0.0;
}

.time-slider:horizontal {
 -fx-background-color: linear-gradient(to bottom, derive(-fx-base,-3%),
derive(-fx-base,5%) 50%, derive(-fx-base,-3%));
 -fx-pref-height: 16.0;
 -fx-max-height: 16.0;
}

.time-slider > * > .slider {
 -fx-show-tick-marks: false;
}

.time-slider > * > .slider > .track {
 -fx-background-color: transparent;
}

.time-slider > * > .slider > .thumb {
 -fx-pref-width: 100;
 -fx-background-color: -fx-outer-border, -fx-inner-border,
-fx-body-color;
 -fx-background-insets: 2.0, 3.0, 4.0;
 -fx-background-radius: 3.0, 2.0, 1.0;
}

.time-slider > * > .slider:focused > .thumb {
}

.time-slider > * > .adjust-plus {
 -fx-pref-width: 0;
 -fx-shape: null;
}

.time-slider > * > .adjust-minus {
 -fx-pref-width: 0;
 -fx-shape: null;
}

/*
 * The styling of the labels showing the zone ID of a row.
 */
.zoneIdLabel {
 -fx-padding: 4 5 4 5;
 -fx-background-color:
 transparent,
 rgba(0,0,0,0.05),
 linear-gradient(#dcca8a, #c7a740),
 linear-gradient(#f9f2d6 0%, #f4e5bc 20%, #e6c75d 80%, #e2c045
100%),

 linear-gradient(#f6ebbe, #e6c34d);
 -fx-background-insets: 0,2,3,4,5;
 -fx-background-radius: 4;
 -fx-font-family: "Helvetica";
 -fx-font-size: 10px;
 -fx-text-fill: #311c09;
 -fx-effect: innershadow(three-pass-box , rgba(0,0,0,0.1) , 2, 0.0 , 0

, 1);
}

graphics.css

/*
 * graphics.css file of FlexGanttFX
 *
 * Copyright 2014 Dirk Lemmermann Software & Consulting
 */
.root {
 /* The color used for drawing links between activities */
 -flexganttfx-link-color: rosybrown;
}

/*
 * We need to adjust the list view so it stays in synch with the tree
 * table view. We also have to remove all padding from the list cells
 * and assign a default row height that is equal to the default row
 * height defined in Row.java.
 */
.list-view {
 -fx-padding: 0.0;
}

.list-view:focused {
 -fx-padding: 0.0;
}

.list-cell {
 -fx-padding: 0.0;
 -fx-pref-height: 24px;
}

.list-cell-row-pane {
 -fx-background-color: transparent;
}

/*
 * The single row pane, vbox row pane, and the splitpane row pane all have
 * to set a background color. The list view version doesn't need to as it
uses
 * the colors of the rows.
 */
.single-row-pane,
.vbox-row-pane,
.splitpane-row-pane {
 -fx-background-color: white;
}
.vbox-row-pane {

 -fx-border-color: transparent transparent, gray, transparent;
 -fx-border-width: .25px;
}

/*
 * The lasso is used to select multiple activities at once.
 */
.activities-lasso {
 -fx-stroke: red;
 -fx-fill: rgba(255.0,0.0,0.0,0.2);
}

/*
 * The cursor lines.
 */
.horizontal-cursor,
.vertical-cursor {
 -fx-stroke: olivedrab;
 -fx-stroke-width: 1.5;
}

.horizontal-cursor-indicator {
 -fx-background-color: green, white;
 -fx-background-insets: 0, 2;
 -fx-background-radius: 5px;
 -fx-padding: 5px;
 -fx-pref-width: 8;
 -fx-pref-height: 8;
}

/*
 * Marked Time Interval
 */
.marked-time-line {
 -fx-stroke-width: 1.5px;
 -fx-stroke: cornflowerblue;
 -fx-stroke-dash-array: 4 3;
}

.marked-start-time-line {
}

.marked-end-time-line {
}

/*
 * Row controls button are shown when the mouse hovers over a row that can
be
 * edited (flipped around).
 */
.row-controls-button {
 -fx-padding: 5 9 7 7;
 -fx-background-insets: 0 4 2 2;

 -fx-background-color: rgba(0,0,0,.5);
 -fx-background-radius: 0;
 -fx-text-fill: white;
 -fx-font-size: 8;
 -fx-font-weight: bold;
}
.row-controls-button:hover,
.row-controls-button:focused {
 -fx-padding: 5 9 7 7;
 -fx-background-insets: 0 4 2 2;
 -fx-background-color: rgba(0,0,0,.6);
 -fx-background-radius: 0;
 -fx-text-fill: white;
 -fx-font-size: 8;
 -fx-font-weight: bold;
}

.row-controls-button:pressed,

.row-controls-button:selected {
 -fx-padding: 5 9 7 7;
 -fx-background-insets: 0 4 2 2;
 -fx-background-color: rgba(0,0,0,.7);
 -fx-background-radius: 0;
 -fx-text-fill: white;
 -fx-font-size: 8;
 -fx-font-weight: bold;
}

.virtual-grid-popover > .border {
 -fx-padding: 10px;
}

.grid-button,

.grid-button:hover,

.grid-button:selected,

.grid-button:focused,

.grid-button:pressed {
 -fx-font-weight: bold;
 -fx-font-size: 10px;
 -fx-alignment: center-left;
 -fx-label-padding: 2 0 2 0;
 -fx-background-radius: 2;
 -fx-background-insets: 4;
}

.grid-button {
 -fx-background-color: white;
}

.grid-button:hover {
 -fx-background-color: lightgray;
}

.grid-button:pressed {
 -fx-background-color: gray;
 -fx-text-fill: white;
}

.grid-button:selected {
 -fx-background-color: black;
 -fx-text-fill: white;
}

/*
 * The styles used for the activity links. A link consists of a path and
two
 * regions (one for the start handle, one for the end handle).
 */
.link {
 -fx-stroke-width: 1.5px;
 -fx-stroke: -flexganttfx-link-color;
}

.link-start-handle {
 -fx-border-color: derive(-flexganttfx-link-color, -20%);
 -fx-background-color: derive(-flexganttfx-link-color, -20%);
 -fx-pref-width: 6px;
 -fx-pref-height: 6px;
 -fx-translate-y: -3px;
 -fx-shape: "M 100, 100 m -75, 0 a 75,75 0 1,0 150,0 a 75,75 0 1,0
-150,0";
 -fx-scale-shape: true;
}

.link-end-handle {
 -fx-background-color: derive(-flexganttfx-link-color, -20%);
 -fx-pref-width: 8px;
 -fx-pref-height: 8px;
 -fx-translate-x: -8px;
 -fx-translate-y: -4px;
 -fx-shape: "M 0 0 L 100 50 L 0 100 L 0 0 Z";
 -fx-scale-shape: true;
}

.link-start-handle-rotated {
 -fx-translate-x: -6px;
}

.link-end-handle-rotated {
 -fx-translate-x: 0px;
}

/*
 * The lens for the graphics area. Experimental. Feature planned for 1.2
release earliest.
 */

.graphics-lens {
 -fx-effect: innershadow(gaussian, gray, 10, .1, 0, 0);
 -fx-border-color: gray;
 -fx-border-insets: 8px;
}

.graphics-lens-popover {
 -fx-border-color: red;
}

timeline.css

/*
 * timeline.css file of FlexGanttFX
 *
 * Copyright 2014 Dirk Lemmermann Software & Consulting
 */

/*
 * timeline-first/middle/last are styles that are applied depending on the
 * position of the Gantt chart in a multi Gantt chart context, e.g. the
 * DualGanttChartContainer or the MultipleGanttChartContainer.
 */
.timeline {
 -fx-background-color: -fx-body-color;
 /*
 * The pref height of the timeline has to match the pref height
 * of the table column headers, so that they
 */
 -fx-pref-height: 60px;
}

.timeline-first {
}
.timeline-middle,
.timeline-last {
 /*
 * The pref height of the timeline is smaller if the timeline
 * is used for the second, third, ... chart in a multi Gantt chart
 * context.
 */
 -fx-pref-height: 24px;
}

/*
 * The lasso used for selecting time intervals.
 */
.timeline-lasso {
 /* semi-transparent rectangle, blue by default (modena.css) */
 -fx-opacity: 60%;
 -fx-background-color: -fx-accent;
}

6. Logging

Introduction
Logging Domains
Configuration File

Introduction

FlexGanttFX has some built in logging support using the standard java.util.logging framework. Several logging domains are defined in the class c
om.flexganttfx.core.LoggingDomain. The following table lists the available domains.

Logging Domains

Domain Description

CONFIG Anything related to the configuration of the Gantt chart control. For example: the renderers that are being registered for
different activity types.

DND Displays everything related to a drag and drop operation (native drag and drop / platform provided drag and drop).

EDITING Reports changes to the start time, end time, percentage complete, chart value, of an activity.

EVENTS Informs about activities related to events: registered listeners, events that are being sent.

NAVIGATION Scrolling, zooming.

PERFORMANCE Informs about performance related aspects.

RENDERING Anything relate to rendering rows or activities.

REPOSITORY Lists repository operations.

Configuration File

The following file can be used to configure logging for .FlexGanttFX

To use this property file add the following command line argument:
-Djava.util.logging.config.file=${project_loc}/log.properties
Specify the handlers to create in the root logger
(all loggers are children of the root logger)
The following creates two handlers
handlers = java.util.logging.ConsoleHandler,
java.util.logging.FileHandler

handlers = java.util.logging.ConsoleHandler

Set the default logging level for the root logger
.level = INFO

Set the default logging level for new ConsoleHandler instances
java.util.logging.ConsoleHandler.level = OFF

Set the default logging level for new FileHandler instances
java.util.logging.FileHandler.level = ALL

Set the default formatter for new ConsoleHandler instances
java.util.logging.ConsoleHandler.formatter =
com.flexganttfx.core.LoggingFormatter

FlexGanttFX logging domains
com.flexganttfx.config.level = OFF
com.flexganttfx.performance.level = OFF
com.flexganttfx.repository.level = OFF
com.flexganttfx.editing.level = OFF
com.flexganttfx.navigation.level = OFF
com.flexganttfx.rendering.level = OFF
com.flexganttfx.dnd.level = OFF
com.flexganttfx.events.level = OFF

	FlexGanttFX Developer Manual
	1. Installation
	2. Tutorial
	3. Controls
	3.1 GanttChart
	3.1.1 Model
	3.1.2 Detail Node
	3.1.3 Display Mode
	3.1.4 Graphics Header
	3.1.5 Row Header
	3.1.6 Property Sheet
	3.1.7 Other Features

	3.2 MultiGanttChartContainer
	3.3 DualGanttChartContainer
	3.4 QuadGanttChartContainer
	3.5 GraphicsBase
	3.4.1 System Layers
	3.4.2 Drag & Drop
	3.4.3 Event Handling
	3.4.4 Activity Editing
	3.4.5 Row Editing
	3.4.6 Activity Rendering
	3.4.7 Row Rendering
	3.4.8 Context Menu

	3.6 Timeline
	3.5.1 Timeline Model
	3.5.2 Time Tracker

	3.7 Dateline
	3.6.1 Dateline Model

	3.8 Eventline

	4. Model
	4.1 Activity
	4.1.1 ChartActivity
	4.1.2 CompletableActivity
	4.1.3 HighLowChartActivity

	4.2 ActivityRef
	4.3 ActivityLink
	4.4 ActivityRepository
	4.4.1 IntervalTreeActivityRepository
	4.4.2 ListActivityRepository

	4.5 Row
	4.6 Layer
	4.7 LinesManager
	4.8 Layout
	4.8.1 Gantt Layout
	4.8.2 Agenda Layout
	4.8.3 Chart Layout

	4.9 Calendar

	5. Styling (CSS)
	dateline.css
	eventline.css
	gantt.css
	graphics.css
	timeline.css

	6. Logging

