1. FlexGanttFX Developer Manual
1.1 1. Installation
1.2 2. Tutorial
1.33.Controls
1.3.1 3.1 GanttChart ..

1.3.1.1 3.1.1 Model

1.3.1.23.1.2 Detail NOGEo e e e

1.3.1.3 3.1.3 Display

MOdE L e e

1.3.1.4 3.1.4 Graphics Header e
1.3.1.5 3.1.5 ROW Header . ..o e
1.3.1.6 3.1.6 Property Sheet e
1.3.1.7 3.0.7 Other FEatUIES . ..ottt e e e e e
1.3.2 3.2 MUltiGaNttChartCoNtainerottt e e e
1.3.3 3.3 DualGanttChartCoNtaiNert e
1.3.4 3.4 QuadGanttChartCoNtaiNert

1.3.5 3.5 GraphicsBase
1.3.5.1 3.4.1 System

LAY S .ot

1.3.5.23.4.2 Drag & DrOD . ..ot e
1.3.5.3343 EventHandling
1.3.5.4 3.4.4 Activity EditiNg oot e
1.3.5.5 3.4 5 ROW EditiNgot e
1.3.5.6 3.4.6 ACLIVIty RENUEIING . . . oot

1.3.5.7 3.4.7 Row Re
1.3.5.8 3.4.8 Context
1.3.6 3.6 Timeline

NACIING . . ottt e e
MeNU .

1.3.6.1 3.5. 1 Timeline Model e e
1.3.6.2 3.5. 2 TIMe TraCKer . ..o e e e

1.3.7 3.7 Dateline

1.3.7.1 3.6.1 Dateline Model e e

1.3.8 3.8 Eventline
1.44.Model
1.4.1 4.1 Activity
1.4.1.1 4.1.1 ChartAc

VY . oo e

1.4.1.2 4.1.2 Completable ACtiVity
1.4.1.3 4.1.3 HIghLOWCRHAIACHIVILYttt e e e e e et e e e e

1.4.2 4.2 ActivityRef ...
1.4.3 4.3 ActivityLink ..
1.4.4 4.4 ActivityReposito

Ty e e e e e

1.4.4.1 4.4.1 IntervalTreeACtiVItYREPOSIIONYttt e e e e
1.4.4.2 4.4.2 LiStACHVItYREPOSIIOIYo

14545Row
1.464.6 Layer
1.4.7 4.7 LinesManager

1.4.84.8 Layout

1.4.8.1 4.8.1 GaNntt LAYOULottt e e e e

1.4.8.2 4.8.2 Agenda

LAy OUL .

1.4.8.34.8.3 Chart LayOuULttt

1.4.9 4.9 Calendar
1.55. Styling (CSS)
1.5.1 dateline.css
1.5.2 eventline.css
1.5.3gantt.css
1.5.4 graphics.css
1.5.5timeline.css
1.66.Logging

FlexGanttFX Developer Manual

This confluence space is the home of the FlexGanttFX documentation.Please feel free to comment on anything that you think might need
improving.

e 00 Gantt Chart '
® Now || I€ Earliest || 3] Latest Il All ®, Zoomin || €, zeomout | | M Table | [& cursor | »
W 14, Montag 31. Marz 14 W 15, Montag 7. April 14 W 16, Montag 14. April 14
Name 41 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20
12.04.2014 00:26:41
Y l l
1 Default
OK

Search this documentation

1. Installation

® Step 1: Download and Install Java 8

® Step 2. Download the FlexGanttFX distribution
® Step 3. Unpack the distribution

® Step 4. Add JAR files to classpath

® Step 5. Create application class

Step 1: Download and Install Java 8

Download JDK 8 and run the installer. Java 8 includes JavaFX 8.

Step 2. Download the FlexGanttFX distribution

Go to the downloads section of http://www.dlsc.com and download the latest release of FlexGanttFX. The download file will be a ZIP archive
containing the required JAR files, demos, tutorials, APl documentation, etc...

Step 3. Unpack the distribution

Unzip the distribution to your local file system. Once upacked you will see the following content:

http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html
http://www.dlsc.com/

The distribution contains the following subfolders:

css - copies of the stylesheets used by FlexGanttFX (the originals are included in the JAR file)

demos - several runnable jar files, simply double click to run or call "java -jar xxx-demo.jar" (make sure to use Java 8u60+)
docs - the APl documentation of FlexGanttFX

ext - third-party JAR files required for running FlexGanttFX

legal - the license agreements as PDF files

lib - the FlexGanttFX libraries

tutorial - files to get you started

Step 4. Add JAR files to classpath

Assuming that you downloaded release 1.6.0 then add the following files (located in the distribution's lib folder) to your classpath.

® flexganttfx-core-1.6.0.jar - contains various utility classes and the licensing support

® flexganttfx-model-1.6.0.jar - all classes related to the data model (activities, rows, repositories)
* flexganttfx-view-1.6.0.jar - the view classes, such as the actual Gantt Chart control

¢ flexganttfx-extras-1.6.0.jar - additional classes such as a toolbar and a statusbar

Add the files located in the ext folder to your classpath.

® controlsfx.jar - the distribution of the ControlsFX project
® license4j.jar - code for supporting the licensing concepts
Step 5. Create application class

The following listing shows the most basic setup that is required to launch a Gantt chart user interface.

...

i mport javaf x. application. Application;
i mport j avaf x. scene. Scene;

i mport javaf x. st age. St age;

i mport com fl exganttfx.view GanttChart;

public class MyFirstGanttChart extends Application {

@verride
public void start(Stage stage) throws Exception {

/'l <- Qur Gantt chart
Gantt Chart<?> gantt = new Gntt Chart<>(),

Scene scene = new Scene(gantt);
st age. set Scene(scene) ;
st age. cent er OnScreen() ;

st age. si zeToScene();
st age. show() ;

public static void main(String[] args) {
Appli cation.launch(args);

2. Tutorial

http://controlsfx.org

In this tutorial we are creating a very simple solution for displaying the schedule of an aircraft fleet.To install FlexGanttFX please follow the
instructions found in 1. Installation.

View Model

Let's start by creating a view model for the Gantt chart. Our objects are Fleet, Aircraft, Crew, and Flight. Instances of Flight will be shown as a
horizontal bar in the graphics area of the Gantt chart while the first three will be displayed in the rows of the tree table area. Fleet, Aircraft, and C
rew share a common superclass called ModelObject, an extension of Row.

The Row class is being used to define a hierarchical data structure by the help of three type arguments: the first one specifies the type of the
parent row, the second one the type of the children rows, and the third one the type of activities that will be shown on the right-hand side of the
Gantt chart.

Model Object

cl ass Mdel Obj ect <
P extends Row?,?,?>, [/ Type of parent row
C extends Row<?,?,?>, // Type of child rows
A extends Activity> extends Row<P, C, A> { }

We can now pass ModelObject as a type argument when creating an instance of a GanttChart control. This informs the control that all rows will
have this common supertype.

Typed Gantt Chart
Gant t Chart <Mbdel Obj ect <?, ?, ?> gantt = new Gantt Chart<>()

The Aircraft model class can be implemented as shown in the following code fragment, assuming that a fleet consists of several aircrafts, each
aircraft having a crew, and flights being assigned to aircrafts and crews.

Row Type: Aircraft

public class Aircraft extends Mdel Object<Fleet, Crew, Flight> {
public Aircraft(String nane) {
super (nane) ;

Activity Type: Flight
public class Flight extends Mutabl eActivityBase<FlightData> {
public Flight(FlightData data) ({

super (data. getFlightNane()); // the activity nane

set Start Ti me(data. getFl i ght DepartureTime()); // start / end tinmes as
java.tine.lnstant

set EndTi ne(data. get Flight Arrival Time());

set User bj ect (data); // a user object according to the type argunent
above

This class definies a flight as a mutable activity, which means that the flight can be edited by the user. We can also see that the activity gets its
information from a domain object of type FlightData . Supporting a user object allows us to create a bridge between the domain model and the vi
ew model. All that is left to do now is to add the activities / the flights to the rows / the aircrafts. For this we can simply call the method Row.addA
ctivity(Layer, Activity).

Activity Repositories

Rows do not store activities themselves, instead they are delegating all activity-related functionality to a repository of type ActivityRepo
sitory. The default repository is of type IntervalTreeRepository. Applications can implement their own repositories and register them
by calling Row.setRepository() .

Layers

Layers are used to create groups of activities so that they can be shown / hidden together. In our example we want to group flights based on their
service type (cargo, charter, training, etc...).

...

Layers

Layer cargolLayer = new Layer (" Cargo");

Layer trainingLayer = new Layer("Training");

Layer charterLayer = new Layer("Charter");

gantt.getLayers().addAl | (cargoLayer, trainingLayer, charterlLayer); // make
| ayers known to Gantt

Now the Gantt chart knows which layers it needs to rendere and we can create the link between the layers and the activities. This is done when
we add the activities to the rows (here: add flights to aircrafts).

Adding Activities / Flights

Flight flightl = new Flight(); // a cargo flight
Flight flight2 = new Flight(); // a training flight
Flight flight3 = new Flight(); // a charter flight

aircraftl. addActivity(cargoLayer, flightl);
aircraftl. addActivity(trainingLayer, flight2);
aircraft2.addActivity(charterLayer, flight3);

Intermediate Result

In the following code sample we are combining all of the steps from above.

Aircraft Gantt Chart

i mport j avaf x. application. Application;
i mport j avaf x. scene. Scene;
i mport j avaf x. st age. St age;

i mport com fl exganttfx.nodel.Activity;

i mport com fl exganttfx. nodel . Layer;

i mport com fl exganttfx. nodel . Row,

i mport com fl exganttfx.nodel.activity. Mutabl eActivityBase;
i mport com fl exganttfx.view GanttChart;

public class MyFirstGanttChart extends Application {

/*

* Common superclass of Fleet, Aircraft, and Crew.

*/

cl ass Mdel oj ect <
P extends Row?,?,?> [/ Type of parent row
C extends Row?,7?,?> [/ Type of child rows
A extends Activity> extends Row<P, C, A> { }

cl ass Fl eet extends Model Obj ect <Rows?, ?,?>, Aircraft, Activity> { }
class Aircraft extends Model Object<Fleet, Crew, Flight> { }
class Flight extends Miutabl eActivityBase<Cbject> { }

@verride
public void start(Stage stage) throws Exception {

/1 Qur root object.
Fleet fleet = new Fleet();
fl eet. set Expanded(true);

/!l Create the control.
Gant t Chart <Mbdel Obj ect <?,?, ?>> gantt = new Gantt Chart<>(fleet);

/1 Layers based on service type.

Layer cargolLayer = new Layer (" Cargo");

Layer trainingLayer = new Layer (" Training");

Layer charterlLayer = new Layer("Charter");

gantt. get Layers().addAl | (cargolLayer, trainingLayer, charterlLayer);

/Il Create the aircrafts.
Aircraft aircraftl = new Aircraft();
Aircraft aircraft2 = new Aircraft();

/1 Add the aircrafts to the fleet.
fleet.getChildren().addAll (aircraftl, aircraft?2);

/1l Create the flights

Flight flightl = new Flight(); // a cargo flight
Flight flight2 = new Flight(); // a training flight
Flight flight3 = new Flight(); // a charter flight

aircraftl. addActivity(cargoLayer, flightl);
aircraftl. addActivity(trainingLayer, flight2);
aircraft?2.addActivity(charterLayer, flight3);

Scene scene = new Scene(gantt);

stage.setTitle("Fl eet Schedul e");
st age. set Scene(scene) ;
st age. cent er OnScreen() ;
st age. si zeToScene() ;
st age. show() ;
}

public static void main(String[] args) {

Appl i cation. | aunch(args);

...

The image below shows what we will see when we run this code.

8 00

Fleet Schedule '
W 18, Montag 14. April 14 W 17, Montag 21. April 14 W 18, Montag 28. April 14 W 19, Montag 5. Mai 14
L Name 4 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 01 02 03 04 05 06 07 08 09
27.04.2014 13:53:48
1. ¥ Default I I I
2 Default |

3 Default

Activity Renderers

This result is not bad for just a few lines of code, however the rendering of the flights is not attractive at all. We can customize their apperance by
registering a different ActivityRenderer for the activity type Flight . This is done by calling the method GraphicsBase.setActivityRenderer() wh

ere the graphics view is the control on the right-hand side of the Gantt chart. It is responsible for rendering all activities. We can add the following
lines to our example from above.

Registering an Activity Renderer
G aphi csVi ew <Mbdel Obj ect <?, ?
graphi cs. set Acti vi t yRender er (
Fl i ght.cl ass,
Gantt Layout . cl ass,

new Acti vityBar Render er <>(graphics, "FlightRenderer"));

, ?>> graphics = gantt. get Graphics();

This replaces the default activity renderer with a renderer that draws a fixed-height bar. Interesting about this code is that we are not only passing
the activity type and the renderer instance but also a layout type. We don't want to spend too much time on layouts in the context of this quick

start guide but let's just say that FlexGanttFX is capable of displaying activities in several different ways (as time bars, as chart entries, as
agenda entries).

Our example now looks like this:

0 T3 I < TO——— RN 2 |2 e 2 1 — R

W 18, Montag 14. April 14 W 17, Montag 21. April 14 W 18, Montag 28. April 14 W 19, Montag 5. Mai 14
* Name 4 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 01 02 03 04 05 06 07 08 09
23.04.2014 08:27:55
1I ¥ Default
2 Default J
3 Default J

We can now add a GanttChartToolBar and a GanttChartStatusBar to the example. This allows us to perform actions on the chart and also to
verify that the layers have been added properly. The following lines of code are needed for this.

Status- and Toolbar

Bor der Pane bor der Pane = new Bor der Pane();

bor der Pane. set Top(new Gantt Chart Tool Bar (gantt));

bor der Pane. set Center (gantt);

bor der Pane. set Bott on{ new Gantt Chart St at usBar (gantt));
Scene scene = new Scene(border Pane);

Our example will now look like this after clicking on the layers button in the toolbar.

P

18006 Fleet Schedule
| 2% Detail | | & Now || I€ Earliest || 2] Latest | | 1 Al | | & Zoomin || €, Zoom Out | [‘Layers“@ﬂader”EDTahlel [cursor | @ crid ~ |[Calendars | [Now Line |
W 16, Montag 1. April 14 . 14 W 19, Montag 5. Mai 14 W 20, Mor
+ Name 4 15 16 |17 |18 18 20| LayerName Doty Gl ey la 04 05 06 07 08 09 10 11 12 13
| [Charter] v ¥ i
1/ ¥ Default || Training DR AV ¥R
2 Default | & cargo @/ A »®
3 Default |
i G

NONE

OK

Listening to Change

Now that we have visualized our data we obviously want to interact with it and we want to be informed about the changes that we make. Our
activities are, by default, editable. This means we can drag them horizontally or vertically. To receive events we only need to register an ActivityE

vent handler with the graphics view control by calling GraphicsBase.setOnActivityChanged().

Receiving Activity Events
-> Systemout.println(evt));

gr aphi cs. set OnActi vi t yChanged(evt

When we run our application now we will see the following output in the console.

event type: DRAG STARTED, tine interval: 2014-04-17T21:45:00Z -
2014- 04- 22T21: 30: 00Z,
val ue (chart value / percentage conplete): 0.0,
activity "null from 2014-04-18T12: 15:00Z until 2014-04-23T12:00: 00Z,
user object = null",
row = "Defaul t",
| ayer = "Training"

event type: DRAG ONGO NG tinme interval: 2014-04-17T21:45:00Z -
2014-04-22T21: 30: 00Z,
val ue (chart value / percentage conplete): 0.0,
activity "null from 2014-04-18T12: 15: 00Z until 2014-04-23T12: 00: 00Z,
user object = null",
row = "Defaul t",
| ayer = "Training"

event type: DRAG FINSHED, tine interval: 2014-04-17T21:45:00Z -
2014- 04- 22T21: 30: 00Z,
val ue (chart value / percentage conplete): 0.0,
activity "null from 2014-04-18T03: 00: 00Z unti| 2014-04-23T02: 45: 00Z,
user object = null",
row = "Defaul t",
| ayer = "Training"

Please notice the three different event types DRAG_STARTED, DRAG_ONGOING, and DRAG_FINISHED The first one gets fired when the
user initiates a drag, the second while while the drag is still in progress, and the third one when the drag has finished. This pattern can be
observed in JavaFX itself and it was implemented throughout FlexGanttFX as well. Make sure to take a look at the various event types defined in
the ActivityEvent class to find out how much information you can receive when the user performs editing operations.

3. Controls

FlexGanttFX ships with several custom JavaFX 8 controls:

GanttChart
MultiGanttChartContainer
DualGanttChartContainer
GraphicsBase
® ListViewGraphics
® VBoxGraphics
® SplitPaneGraphics
® SingleRowGraphics
® Timeline
® Dateline
® Eventline

3.1 GanttChart

Introduction

Structure

Master / Detail Panes

Standalone vs. Multi- / DualGanttChart

Introduction

A generic JavaFX control to visualize any kind of scheduling data along a timeline. The model data needed by the control consists of rows with
activities, links between activities, and layers to group activities together.

Structure

The control consists of several children controls:

TreeTableView: shown on the left-hand side to display a hierarchical structure of rows
GraphicsBase: shown on the right-hand side to display a graphical representation of the model data
Timeline: shown above the graphics view. The timeline itself consists of two child controls.

Dateline: displays days, weeks, months, years, etc...

Eventline: displays various time markers

The screenshot belows shows the initial appearance of an empty Gantt chart control.

W 14, Montag 31. Mérz 14 W 15, Montag 7. April 14 W 16, Montag 14. April 14
Mame 4 01 02 03 04 05 06 OF 08 09 10 11 12 13 14 15 16 17 18 19 20

12.04.2014 00:26:41

1| Default

Master / Detail Panes

The Gantt chart uses two MasterDetailPane instances from ControlsFX for the high-level layout. The primary master detail pane displays the tree
table as its detail node and the secondary master detail pane initially displays a property sheet as its detail node. The property sheet is used at
development time and can be replaced with any node by calling setDetail(Node). The property sheet displays a lot of properties that are used by
the controls, the renderers, the system layers to fine-tune the appearance of the control. Many of them can be changed at runtime.

Standalone vs. Multi- / DualGanttChart

A Gantt chart can be used standalone or inside a MultiGanttChartContainer or DualGanttChartContainer. When used in one of these containers
the position of the Gantt chart becomes important. The control can be the first chart, the last chart, the only chart, or a chart somewhere in the
middle. A "first" or "only" chart always displays a timeline. A "middle" or "last" displays a special header (see setGraphicsHeader()). The
containers are also the reason why the control distinguishes between a timeline (getTimeline()) and a master timeline (getMasterTimeline()).
The master timeline is the one shown by the "first" chart, while the regular timeline is the one that belongs directly to this instance.

3.1.1 Model

The Gantt chart control itself doesn't really have any requirements for a model. It is simply providing convenience methods for the underlying
controls (tree table view, graphics view). The following table lists the relevant methods:

Method Description

voi d set Root (R row); Sets / gets the root node for the underlying tree table view control.
R get Root () ;

Observabl eLi st <Layer > get Layers(); The list of layers that will be displayed by the graphics view.

Cbservabl eLi st <Acti vityLi nk<?>> getLinks(); The list of links that will be displayed by the graphics view.

http://controlsfx.org
http://multigantt

Qbser vabl eLi st <Cal endar <?>> get Cal endars(); The list of calendars that will be displayed by the graphics view.

3.1.2 Detail Node

The Gantt chart control is using two nested master / detail panes (from ControlsFX). The first one contains the tree table view as its detail node
and the second master / detail pane as its master node. The second master / detail pane shows the graphics view as the master node and a prop

erty sheet as the detail node. The following table lists the related methods:
Method Description
set Det ai | (Node) ; Sets / gets the node that is being shown as the detail node of the secondary master detail pane.

get Det ai | (Node) ;

get Pri mar yMast er Det ai | Pane() ; Returns the primary master / detail pane. This pane shows the tree table view as its detail and the
secondary master / detail pane as its master.

get Secondar yMast er Det ai | Pane(); Returns the secondary master / detail pane. This pane shows the graphics view as its master and
an optional node as its detail.

The following image illustrates the concept of two nested master / detail panes.

Primary Detail Primary Master

Secondary Master Secondary Detail

3.1.3 Display Mode

® |ntroduction

® Standard Layout
® Table Layout

® Graphics Layout

Introduction

The displayMode property of the Gantt chart control is used to toggle between three different layouts:

® a standard layout with the tree table view shown on the left-hand side and the graphics area on the right-hand side
® atable-only layout where the table will fill the entire width of the Gantt chart control
® a graphics-only layout where the graphics view will fill the entire width of the Gantt chart control

The display mode can be changed by calling the setDisplayMode() method.

Standard Layout

http://fxexperience.com/controlsfx/features/#masterdetailpane
http://controlsfx.org

Mame

1 ¥ [¥ project_schedule_task_farce

2
3
4
5
5]
7
8
q

10
11
12
13
14
15
16

Table Layout

¥ [H] Project N2130

[Weekly Project Status Mesting 1
[Weekly Project Status Meeting 2
[Weekly Project Status Meeting 2
[] Weekly Project Status Meeting 4
[Weekly Project Status Meeting 5
[Weekly Project Status Meeting 6
[Weekly Project Status Mesting 7
[Weekly Project Status Meeting 8
[Weekly Project Status Meeting 9

¥ [l Project Setup

[Create Project Schedule

[Assign Solution Engineer

[Cnboard the Sclution Engineer
[Sclution Engineer available fo...

Mame

1 ¥ [Y project_schedule_task_force

2
3
4
5
G
7
&
9

10
11
12
i
14
15
16

¥ [Project N2130

[Weekly Project Status Meeting 1
Weekly Project Status Meeting 2
¥ Fraj 9
[Weskly Project Status Meeting 3
Weekly Project Status Meeting 4
¥ Fraj !
[Weekly Project Status Meeting 5
es roject Status Meetin
D Weekly Project 5 Meeting 6
es roject Status Meetin
Weekly Project 5 Meeting 7
== roject Status Meetin
D Weekly Project 5 Meeting 8
== roject Status Meetin
Weekly Project 5 Meeting 9

¥ [Project Setup

[Create Project Schedule

[Assign Solution Engineer

[Cnboard the Solution Enginser
[Solution Engineer available fo...

Graphics Layout

3, Montag 4. M:
08 09 10 11 12

W 20, Montag 11. Mai 09
13 14 15

16 17 18

W 21, Montag 18. Mai 09

19

20 21

22

23

| Weekly Project Status Meeting 1

T cCreate Project Schedule

% Complete

2%

2%

100 % N
100 % |
0%

0%

0%

0%

0%

0%

0%

8% |l

100 % |
0%

0%

0%

Start

11.05.09 08:00
11.05.09 08:00
18.05.09 08:00
25.05.09 08:00
01.06.09 08:00
08.06.09 08:00
15.06.09 08:00
22.06.09 08:00
29.06.09 08:00
06.07.09 08:00
13.07.09 08:00
11.05.09 08:00
14,0509 08:00
11.05.09 08:00
08.06.09 08:00
09.06.09 17:00

Fimish

31.08.09 17:00
31.08.09 17:00
18.05.09 09:00
25.05.09 09:00
01.06.09 09:00
08.06.09 09:00
15.06.0% 09:00
22,06.09 09:00
29.06.09 09:00
06.07.09 09:00
13.07.09 09:00
10.06.09 17:00
15.05.09 17:00
05.06.09 17:00
09.06.09 17:00
09.06.09 17:00

3, Montag 4. M; W 20, Montag 11. Mai 09 W 21, Montag 18. Mai 09 W 22, Montag 25. Mai 09 lontag 1
0g 09 10 1 12 13 /14 15 16 17 18 19 20 |21 22 23 24 25 26 27 |28 29 30 31 01 02

24.05.2009 09:36:00

| [[[.

| Weekly Project Status Mesting 1

| Weekly Project Status Mesting 2

O Create Project Schedule

3.1.4 Graphics Header

The graphics header node is a replacement for the timeline when the Gantt chart control is being used in a multi Gantt chart context, for example
when used in a DualGanttChartContainer or a MultiGanttChartContainer.

41, Montag 6. Oktober] W 42 Montag 13. Oktober 14 W 43, Montag 20. Oktober 14 W 44, Montag 27. Oktober 14
* Narme 08 09 | 10 BTN 13 | 14 | 15 | 16 | 17 QUSRQIAS 20 | 21 | 22 | 23 | 24 QSRR 27 | 2B | 29 | 30 | 31 QOdN02
17.10.2014 06:34:27

No Data

+ Name Graphics Header

No Data

This node can be set by calling GanttChart.setGraphicsHeader(Node). The node passed to this method can be anything. The only
important thing to be aware of is that the preferred height of this node has to be set to the same value as the preferred height of the tree
table header.

3.1.5 Row Header

® Introduction
® Row Header Type
® Row Header Factory

Introduction

The first column in the tree table view is called "row header". This column is provided by the framework and can not be removed. By default it is
used to display row numbers but can be reused for other purposes. The RowHeader class is a subclass of TreeTableColumn with some special
logic to it. It supports row resizing and might call back on a factory to produce its graphic.

Row Header Type
The enumerator RowHeaderType defines the different ways the row header can be used.

Value Description

GRAPI C_NODE Makes the row header cells display a custom node for each row.

+ Mame

@ ~ RootRow
/A ¥ Row(
¥ Child row 0
(] Child child row 0
Child child row 1

LEVEL_NUMBER Makes the row header cells display the level number of the current row (1, 1.1, 1.2, 2, 2.1, 2.2, 2.3, ...).

+ Mame

¥ Root Row
1 ¥ Row(
1.1 ¥ Child row 0
1.1.1 Child child row O
1.1.2 Child child row 1

ROW NUMBER Makes the row header cells display the number of the current row (1, 2, 3,).

+ Mame

¥ Root Row
¥ Row 0
¥ Child row 0
Child child row 0
Child child row 1

i o= W pka

Row Header Factory

If the graphic node header type is chosen then the row header will call back on the row header node factory that is supplied by the GanttChart
class. The following example shows how to register a possible implementation of such a factory.

...
1

Row Header Node Factory

gantt Chart . set RowHeader NodeFact ory(row -> {
public Node call (R row) {
Button del ete = new Button("Del ete");
del et e. set OnActi on(evt -> del et eRow(row));
return del ete;

3.1.6 Property Sheet

The default control used for the Gantt chart detail node property is the property sheet from the ControlsFX open source project. It is used to
display the properties of the Gantt chart itself and its subcontrols (timeline, dateline, eventline, graphics). It also shows the properties of all render
ers registered with the controls. The screenshot below shows the property sheet as it presents itself when the detail node of the primary master
detail pane becomes visible. It can be made visible by calling GanttChart.setShowDetail(true).

http://fxexperience.com/controlsfx/features/#propertysheet
http://controlsfx.org

3, Montag 4. M: W 20, Montag 11. Mai 09 WV 21, Montag 18. Mai 0¢ =E |
& Name 08 oo e 11 | 12 | 12 | 14 | 15 A6 A 18 | 19 | 20 | 21 A
» Renderer: Calendars (Gantt Layout)

1 ¥ [project_schedule_task_farce | — : » Renderer: Chart Activity (Chart Layout)

2| ¥ [Project N2130 [» Renderer: Completable Activity (Chart Layout)

3 [Weekly Project Status Meeting 1 | Weekiy Project Stam * Renderer: Completable Activity (Gantt Layout)

4 [Weekly Project Status Meeting 2 Enabled =

5 [Weekly Project Status Meeting 3 Snap To Pixel v

]] Weekly Project Status Meeting 4 Padding

7] Weekly Project Status Meeting 5 & Light Blue -~

g] Weekly Project Status Meeting 6

9] Weekly Project Status Meeting 7 IR b0 M
10] Weekly Project Status Meeting & Fill Hover M Green -
11 [Weekly Project Status Meeting @ Eill Selected M #21blb -
12| v [Project Setup N Fill Pressed W 799721 =
L] [Create Project Schedule @ Create Project Schedule

14 [Assign Solution Engineer ! - Cp=eigy A o

15 [Onboard the Solution Engineer Stroke H Blue >
16 [} Solution Engineer available fo... Stroke Highlight M b2b200 -
by [Conduct JAP Kickoff | I B Green -~
18 ¥ [Initialisation .) Initia

19 [Gather Requirements (8 Gather Requireme el el 1 M
20 [Signoff Requirements / Scope... hlﬂ_h Signoff Req Cames=Rotnd=d
21 [Create Project Charter) Crea Corner Radius 6.0
22 D Setup Configuration Manage... Setup Configuration Management for Documentation Effect
22 [Setup Change Management Setup Change Management Line Width 05
24 ¥ [System Design —
25 [Code Delivery by iGrafx & Codel Tet Fill M Back -
26 [} Documentation Delivery by i.. Text Fill Selected M Black -
AT [Analyse Code according to JA... Text Fill Hover M EBlack b

When writing your own renderers you can override the getPropertySheetltems() method and add your own items to the list of items
returned by the superclass.

3.1.7 Other Features

® [ntroduction

® Fixed cell size

® Master Timeline

® Tree Table Scrollbar
® Timeline Scrollbar
® Position

® Factory Methods

Introduction

This page describes several of the smaller and normally less important features of the Gantt chart control.

Fixed cell size

The tree table view and the list view of JavaFX both support a property called fixedCellSize. It can be used to improve the performance of both
controls. This is done by setting it to a value other than -1. A value like that informs the controls that each cell will have the same height, which
allows for faster algorithms to be used when updating the controls. The GanttChart class also defines this property in order to ensure that the tree
table view and the list view used by it use the same cell size. If set the Gantt chart will not use the height property of the rows and will also not
allow the user to resize the rows.

Master Timeline

The GanttChart control defines a property called masterTimeLine. This property is used when the Gantt chart is being used in a multi Gantt

chart context (e.g. DualGanttChartContainer or MultiGanttChartContainer). In these situations it is the timeline of the top Gantt chart that is the
basis for rendering weekends, grid lines, etc. Every Gantt chart still has its own timeline subcontrol but they will all know which one is the master.

This is framework functionality that applications should normally not interfere with.

Tree Table Scrollbar

Another subcontrol found in the GanttChart control is the tree table scrollbar. In FlexGanttFX the Gantt chart manages its own horizontal
scrollbar for the tree table view. This is done so that the scrollbar can be placed inside a HiddenSidesPane control from the ControlsFX project.

Timeline Scrollbar

The graphics view also uses a HiddenSidesPane for its horizontal scrolling control. However, this control is not a regular scrollbar but a
specialization of the PlusMinusSlider control from ControlsFX. The TimelineScrollBar allows the user to scroll to the left and right at different
speeds, depending on how far the thumb is away from the center location.

g 13. W 43, Montag 20. Oktober 14 W 44, Montag 27. Oktober 14 Montag 3. Movem
19 20 21 22 232 24 25 26 27 28 29 30 31 01 02 03 |04 05

. 1

Position

The position property of the GanttChart class is used to inform the Gantt chart where it is located within a multi Gantt chart context (e.g. DualGan
ttChartContainer or MultiGanttChartContainer). Possible values are:

Value Description

ONLY The Gantt chart is the only one. This is the default value and will not change if not used in a multi Gantt chart context.

FIRST The Gantt chart is shown at the top of the container.

M DDLE The Gantt chart is not the first and not the last one. It is also not the only one.

LAST The Gantt chart is shown at the bottom of the container.

The screenshot below shows three charts in a MultiGanttChartContainer and their position values.

http://fxexperience.com/controlsfx/features/#hiddensidespane
http://controlsfx.org
http://fxexperience.com/controlsfx/features/#hiddensidespane
http://fxexperience.com/controlsfx/features/#plusminusslider

41, Montag 6. Oktober 1 W 42 Montag 13. Oktober 14 W 43, Montag 20. Oktober 14
= Name B0 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2B

13102014 234148

1 Root of Gantt #1
FIRST
+ Mame
1 Root of Gantt #2
MIDDLE
+ Mame
1 Root of Gantt #3
LAST

This is framework functionality that applications should normally not interfere with.

Factory Methods

There are several protected factory methods used for creating the subcontrols. These methods can be overriden to create subclasses of these
controls.

Method Description
TreeTabl eVi ew Creates the tree table view shown on the left-hand side of the Gantt chart. A typical use case for replacing this
createTreeTabl e(); table is when you already have a tree table view specialization with advanced filtering or interaction options. You

might want to use the same tree table view that your application is already using in other places.

Tinel i ne Creates the timeline.
createTimeline();

G aphi csBase Creates the graphics view. A use case for replacing the standard one might be that your application adds a couple
creat eG aphi cs(); of nodes to the graphics view. Maybe some kind of overlap on top of the graphics (e.g. a radar).
RowHeader Creates the row header column for the tree table view.

cr eat eRowHeader () ;

3.2 MultiGanttChartContainer

® |ntroduction

Introduction

A container capable of displaying multiple instances of GanttChart and keeping their layouts (same table width, same timeline) and their scrolling

and zooming behaviour in synch. The screenshot below shows the initial appearance of an empty multi Gantt chart container.
W 14, Montag 31. Mérz 14 W 15, Montag 7. April 14 W 16, Montag 14. April 1
MName 1 1 02 03 04 05 06 OF 08 09 10 11 12 13 14 15 16 17 18

08.04.2014 09:17:51

1 Root of Gantt #1

Mame

1 Root of Gantt #2

Mame

1 Root of Gantt #3

3.3 DualGanttChartContainer

® |ntroduction

Introduction

A specialization of MultiGanttChartContainer capable of displaying exactly two instances of GanttChart and keeping their layouts (same table

width, same timeline) and their scrolling and zooming behavior in synch. The container distinguishes between a primary and a secondary Gantt
chart, where the secondary Gantt chart is located in the detail node section of a MasterDetailPane. It can be hidden or shown on demand. Each
one of the two Gantt charts can have its own header and footer. Initially only the primary header and the secondary footer are used. The header
for displaying an instance of GanttChartToolBar and the footer for displaying an instance of GanttChartStatusBar. The screenshot below shows

the initial appearance of an empty Dual Gantt chart control.

W 14, Montag 31. Mérz 14 W 15, Montag 7. April 14 W 16, Montag 14. April 14
Mame 11 01 02 03 04 05 06 O7 08 0% 10 11 12 13 14 15 16 17 18 18 20

05.04.2014 15:41:05

1 Default

MName

1 Default

3.4 QuadGanttChartContainer

® |ntroduction

Introduction

A specialization of MultiGanttChartContainer capable of displaying exactly four instances of GanttChart and keeping their layouts (same table
width, same timeline) and their scrolling and zooming behavior in synch. The container distinguishes between the Gantt chart locations
UPPER_LEFT, UPPER_RIGHT, LOWER_LEFT, LOWER_RIGHT. The timelines of the UPPER_LEFT and LOWER_LEFT Gantt charts are
scrolling in sync and the timelines of the UPPER_RIGHT and LOWER_RIGHT are scrolling in sync.

W 29, Monday 11. July 16 W 30, Monday 18. July 16 W 31, Mc W 29, Monday 11. July 16 W 30, Monday 18. July 16 W 31, Mond
* Name 213 14 15 16 17 18 19 20 21 22 23 24 25 26 * Name 213 14 15 16 17 18 19 20 21 22 23 24 25 26 27
1 Root 1 Root
+ N + N
1 Root 1 Root

3.5 GraphicsBase

Introduction
Rendering
System Layers
Editing

Events

Hitpoint Detection
Context Menu

Introduction

The graphics view control is responsible for the rendering of activities and system layers, editing of activities, event natifications, hit detection,
system layer management, and for context menu support.

[Conduct JAP Kickoff
[—] Initialisation
[Gather Requirements
{-3ignoff Requirements / Scope freeze
[J Create Project Charter
9§etup Configuration Manpgement for Documentation

Eﬂ Setup Change Management

[] System Design
» Code Delivery by iGrafx
_\facumentation Delivery by iGrafx

] })-‘-'.nalyse Code according to JAP standards and iCrafx documentation

::Lr-'orkshﬁp with iGrafx to discuss open questions

Rendering

The graphics control uses the Canvas node and the direct drawing API of it (as opposed to the deferred rendering done via the Scenegraph).
This is due to the large data volumes often displayed by Gantt charts. Directly rendering an activity into a bitmap is much faster than updating the
scene graph, reapplying CSS styling, laying out nodes. The graphics control uses a pluggable renderer architecture where renderer instances can
be mapped to activity types, very similar to the way Swing was doing it. The following code is an example of how to register a custom renderer for
a given "Flight" activity and layout type. Please note that the graphics view is capable of displaying activities in three different layouts, hence the
layout type must also be passed to the method.

Renderer Registration

Gantt Chart ganttChart = new GanttChart();

G aphi csBase<?> graphics = ganttChart. get G aphics();

graphi cs. set Acti vi t yRender er (
Flight.class, // the type of activities that will be rendered
Gantt Layout.class, // the type of |ayout where the renderer will be used
new Fl i ght Renderer (graphics)); // the actual renderer instance

System Layers

Activities are not the only thing that need to be displayed. There are also the current time ("now"), grid lines, inner lines, agenda / chart lines, and
so on. All of these things are rendered by so-called system layers. The graphics control manages two lists of these layers. One list for background
layers and one list for foreground layers.

Background layers are drawn "behind" activities, foreground layers are drawn "in front of" activities. Each one of these lists are already
pre-populated but can be changed by the application. For more information on the available system layers, please refer to their individual
documentation.

System layers can be turned on and off directly via the API of the graphics control. There is a boolean property for each layer. The value of these
properties can be set by calling the methods that follow the pattern setShowXYZLayer. System layers that are controlled like this will appear and
disappear with a fade in / fade out animation, while calling SystemLayer.setVisible(boolean) directly will be without any animation.

Editing

Two different callbacks are used to control the editing behaviour of activities. The first maps a mouse event / mouse location to an Gr aphi csBas
e. Edi t Mode and can be registered by calling set Edi t ModeCal | back(C ass, C ass, Call back). The second callback is used to
determine whether a given editing mode / operation can be applied to an activity at all. This callback is registered by calling set Acti vi t yEdi ti
ngCal | back(C ass, Call back) . Most applications will only need to work with the second callback and keep the defaults for the edit mode
locations (for example: right edge used to change end time, left edge used to change start time).

Events

Events of type Act i vi t yEvent are sent whenever the user performs a change inside the graphics view. Applications that want to receive these
events can either call any one of the set OnActi vi t yXYZEvent () methods or by adding an event handler directly via addEvent Handl er (Act
i onEvent . ACTI VI TY_XYZ, ...).Events are fired while the change is being performed and once it has been completed. For this the Act i vi
t yEvent class lists event types with the two different endings CHANGING and CHANGED.

Hitpoint Detection

The graphics view provides support for finding out information about a given position. Activities can be found by calling get Act i vi t yBoundsAt
(doubl e, doubl e) orgetActivityRef At (doubl e, doubl e). The time at an x-coordinate can be looked up by calling get Ti neAt (doub
| e) . The opposite direction is also available: a location can be found for a given time by calling get Locati on(I nstant).

Context Menu

Context menus can be set on any control in JavaFX but due to the complexitiy of the graphics view it does make sense to provide additional
built-in support. By calling set Cont ext MenuCal | back(Cal | back) a context menu specific callback can be registered with the graphics
control. This callback will be invoked when the user triggers the context menu. A callback parameter object (see Gr aphi csBase. Cont ext Menu
Par anet er) will be passed to the callback already populated with the most important values that might be relevant for building a context menu.

3.4.1 System Layers

® |ntroduction
® Available Layers

Introduction

System layers are used in the background and foreground of each row. A background layer gets drawn before the activities are drawn while a
foreground layer gets drawn after the activities are drawn. Each layer is specialized on drawing one type of information: current time, selected
time intervals, grid lines, and so on. The graphics view manages the layers in two lists and provides convenience methods to easily look them up.

Method Description
get Backgr oundSyst emLayer s() Returns the complete list of system layers used in the background of activities.
get For egroundSyst enmLayer s() Returns the complete list of system layers used in the foreground of activities.

get Backgr oundSyst enLayer (O ass) Returns the system background layer instance of the given type.
get For egr oundSyst enLayer (O ass) Returns the system foreground layer instance of the given type.

get Syst emLayer (Cl ass) Returns the system layer instance of the given type, no matter if it is a foreground or background
layer.

® Layers can be added to or removed from the graphics view by adding them to or removing them from the foreground or background list.
® Once you have looked up a layer you can set its properties to customize its appearance. The most common properties are used for line
colors and widths.

System Layer Example

G aphi csBase<?> graphics = ganttChart. get G aphics();

NowLi neLayer nowLayer = graphics. get Backgr oundSyst enlLayer (NowLi neLayer
.cl ass);

nowLayer . set St r oke(Col or. ORANGE) ;

nowLayer.setLineWdth(3); // thick line

System Layers vs. Model Layers
Please note that system layers are not related in any way to model layers. A system layer is basically a renderer for some graphical
feedback while a model layer is used for grouping activities.

Available Layers

The following table lists all system layers that are shipping with FlexGanttFX. The last two columns (FG, BG) are used to indicate whether the

layer is used as a foreground

Layer

AgendaLinesLayer

CalendarLayer

ChartLinesLayer

GridLinesLayer

HoverTimelntervalLayer

InnerLinesLayer

LayoutLayer
NowLineLayer

RowLayer

ScaleLayer

SelectedTimelntervalsLayer

ZoomlintervalLayer

3.4.2 Drag & Drop

Introduction
Events

Feedback Types
Drag Image Provider

Introduction

The platform (Windows, Mac) provided drag and drop (DnD) facilities are used in FlexGanttFX only to move an activity from one row and to

or as a background layer.

Description

Draws the horizontal grid lines for a row if the row or any of its inner lines are using the agenda layout.

Draws the entries returned by the calendars attached to a row or attached to the entire graphics view. The
calendar layer uses pluggable renderers that are mapped to the entry types. Applications can register their own
renderers by calling CalendarLayer.setCalendarActivityRenderer().

Draws the horizontal grid lines for a row if the row or any of its inner lines are using the chart layout.

Draws the vertical grid lines based on the scale resolutions currently present in the dateline. The layer can be
configured to display O to 3 grid line levels. If the dateline is, for example, showing days and weeks then a level of
2 would cause the layer to draw grid lines for days and weeks, while a grid line level of 1 would only render grid
lines for days.

Draws the hover time interval specified by the dateline. If the mouse cursor hovers over a week in the dateline the
n the layer will fill the time interval defined by this week with a highlighting color.

Draws separator lines between inner lines.

By default the line width property of this layer is set to 0 and the lines will not be drawn at all. To
change this simply set a line width greater than 0.

Draws the layout padding areas. Each layout may have some padding added to its top and bottom. This layer fills
the padding area with a solid color.

Draws a vertical line at the location of the current time / now time. The current time is defined in the timeline
model.

Draws the background of each row. The layer can be configured with pluggable renderers that are mapped to the
type of the row. Applications can register their own renderers by calling RowLayer.setRowRenderer(). For more
information please read 3.4.7 Row Rendering.

Draws a scale for an entire row or for each line within the row. Scales vary depending on the layout used for the
row / line. The scale for the chart layout displays the minimum and maximum values while the scale for the agend
a layout displays a time scale (8am, 9am, 10am,). The labels and dashes in the scale layer have to align
perfectly with the lines drawn by the agenda lines layer and the chart lines layer.

Draws the time intervals that were selected by the user (or the application) in the dateline.

Draws the zoom interval as defined by the timeline. The zoom interval gets created by the user via the help of the
timeline lasso.

Drag And Drop Info Property

FG

BG

another. All other editing operations are handled with standard mouse events (pressed, dragged).The new row might actually be a row in another
Gantt chart. The default way to initiate a DnD is to move the mouse cursor into the center of an activity while pressing the SHIFT key. This will
change the cursor to the DnD cursor if this kind of editing operation is supported by the targeted activity (see also "3.4.4 Activity Editing"). The
DnD will terminate once the user lets go of the mouse button.

Events

Just like all the other editing operations DnD will also trigger several events during its execution. The following table lists them:

Event Type

Description

DRAG_STARTED These event types are fired if the editing operation is EditMode.DRAGGING.
DRAG_ONGOl NG
DRAG_FI NI SHED

VERTI CAL_DRAG_STARTED These event types are fired if the editing operation is EditMode.DRAGGING_VERTICAL.
VERTI CAL_DRAG_ONGO NG

VERTI CAL_DRAG_FI NI SHED

The edit mode DRAGGING_HORIZONTAL does not use platform DnD. Hence the event types HORIZOTAL_DRAG_STARTED /
ONGOING / FINISHED are not listed above.

Drag And Drop Info Property
A special property called dragAndDropInfo is available on the graphics view to monitor the DnD operation. This is in addition to the standard
event types mentioned above. The info stored in this property provides the application with the most important information required about the

dragged activity.

Field Description

row The row over which the mouse cursor / the dragged activity is currently hovering.

activityBounds The bouds of the dragged activity (contains an activity reference and the actual activity).

dr agEvent The last drag event (drag ongoing or drag dropped).

dropl nterval The time interval where the activity would be or was actually dropped.

of f set The offset where the mouse grabbed the activity (needed for visual feedback of the drag).
Feedback Types

FlexGanttFX provides different ways of visualizing the DnD feedback. The enumerator DragAndDropFeedback lists the following values which
an be set by calling the setDragAndDropFeedback() method on GraphicsBase.

Value Description

NATI VE A snapshot image of the activity will be taken and placed below the mouse cursor. The image will be set at the
moment the drag gesture gets recognized. Optionally a drag image provider can be used.

The size of the image might be different than the size of the activity (platform-specific).

RENDERED The dragged activity will be constantly rendered on a separate canvas on top of the graphics area. The activity is
guaranteed to keep its original size.

RENDERED_GRI D_SNAPPED = The dragged activity will be constantly rendered on a separate canvas on top of the graphics area. The activity is
guaranteed to keep its original size. The currently active grid will be used to make the dragged activity snap to
the grid locations.

Drag Image Provider

If the DnD feedback type has been set to NATIVE then it is possible to pass a custom image for the drag operation. This can be accomplished by
setting a drag image provider on GraphicsBase by calling setDraglmageProvider(). This method accepts a callback lambda expression. The
input for the callback will be an ActivityRef and the output will be an image.

Drag Image Provider

G aphi csBase<?> graphics = ganttChart. get Gaphics();
gr aphi cs. set Dragl nageProvi der (ref -> createl mage(ref));

The default image is a snapshot of the activity at the moment when the drag started.

3.4.3 Event Handling

® Introduction
® Activity Events
® Activity Events Hierarchy
® Activity Event Properties
® Lasso Events
® Lasso Event Hierarchy
® Lasso Info

® Links / Further Reading

Introduction

The graphics view fires standard JavaFX events in order to let applications react to change. The concepts used for event handler support in Flex
GanttFX are the same as the ones found in the standard JavaFX controls.

Activity Events

Activity events are fired whenever the user deletes or edits an activity. To receive an activity event simply register an event handler with the graph
ics view via one of the convenience methods.

...

Single Activity Event Handler
G aphi csBase<?> graphics = ganttChart. get Graphics();
gr aphi cs. set OnActi vi t yChangeFi ni shed(evt ->
Systemout.println("An activity has changed"));

...

Multiple Activity Event Handlers

G aphi csBase<?> graphics = ganttChart. get G aphics();

gr aphi cs. addEvent Handl er (Act i vi t yEvent . ACTI VI TY_CHANGE_FI NI SHED,
evt -> Systemout.println("Listener 1"));

gr aphi cs. addEvent Handl er (Acti vi t yEvent . ACTI VI TY_CHANGE_FI NI SHED,
evt -> Systemout.println("Listener 2"));

The following table lists all supported activity event types and the convenience setter methods of the graphics view. These methods are used to
quickly register an event handler for the given event type.

Event Types Methods Description

ACTI VI TY_DELETED set OnActi vityDel eted() Fired whenever the user deletes an
activity via the backspace key.

ACTI VI TY_CHANGE

ACTI VI TY_CHANGE_STARTED
ACTI VI TY_CHANGE_ONGO NG
ACTI VI TY_CHANGE_FI NI SHED

CHART _HI GH_VALUE_CHANGE_STARTED
CHART_HI GH_VALUE_CHANGE_ONGO NG
CHART_HI GH_VALUE_CHANGE_FI NI SHED

CHART _LOW VALUE_CHANGE_STARTED
CHART_LOW VALUE_CHANGE_ONGO NG

CHART_LOW VALUE_CHANGE_FI NI SHED

CHART_VALUE_CHANGE_STARTED
CHART_VALUE_CHANGE_ONGOI NG

CHART_VALUE_CHANGE_FI NI SHED

DRAG_STARTED
DRAG_ONGO NG
DRAG_FI NI SHED

END_TI ME_CHANGE_STARTED
END_TI ME_CHANGE_ONGO NG

END_TI ME_CHANGE_FI NI SHED

HORI ZONTAL_DRAG STARTED
HORI ZONTAL_DRAG_ONGOI NG

HORI ZONTAL _DRAG_FI NI SHED

PERCENTAGE_CHANGE_STARTED
PERCENTAGE_CHANGE_ONGO NG

PERCENTAGE_CHANGE_FI NI SHED

START_TI ME_CHANGE_STARTED
START_TI ME_CHANGE_ONGO NG
START_TI ME_CHANGE_FI NI SHED

set OnAct i vi t yChanged()

set OnActi vi tyChangeSt art ed()
set OnActi vi t yChangeOngoi ng()
set OnActi vi t yChangeFi ni shed()

set OnChart H ghVal ueChangeSt art ed() ;
set OnChar t H ghVal ueChangeOngoi ng() ;

set OnChart H ghVal ueChangeFi ni shed() ;

set OnChar t Lowal ueChangeSt art ed() ;
set OnChar t Lowal ueChangeOngoi ng() ;

set OnChar t Lowal ueChangeFi ni shed() ;

set OnChart Val ueChangeSt arted();
set OnChart Val ueChangeOngoi ng() ;

set OnChar t Val ueChangeFi ni shed() ;

set OnActivityDragStarted();
set OnActi vi t yDragOngoi ng();

set OnActi vi t yDr agFi ni shed();

set OnActi vi t yEndTi meChangeSt art ed() ;
set OnActi vi t yEndTi meChangeOngoi ng() ;

set OnAct i vi t yEndTi meChangeFi ni shed() ;

set OnActi vityHori zontal DragStarted();
set OnActi vi t yHori zont al DragOngoi ng() ;

set OnActi vi tyHori zont al Dr agFi ni shed();

set OnActi vi t yPer cent ageChangeSt art ed();

set OnActi vi t yPer cent ageChangeOngoi ng() ;

set OnActi vi t yPer cent ageChangeFi ni shed() ;

set OnActivityStart Ti meChangeStarted();
set OnActivityStart Ti meChangeOngoi ng();

set OnActi vi tyStart Ti meChangeFi ni shed() ;

The parent event type of all activity
changes. Can be used to to receive a
notification for any kind of activity
change.

Fired whenever an activity change has
started, is ongoing, or has finished.

Fired whenever the user has started
editing, is in the process of editing, or
has finished editing the "high" value of a
high / low chart activity.

Fired whenever the user has started
editing, is in the process of editing, or
has finished editing the "low" value of a
high / low chart activity.

Fired whenever the user has started
editing, is in the process of editing, or
has finished editing a chart value of a
chart activity.

Fired whenever the user has started
dragging, is in the process of dragging,
or has finished dragging an activity via
platform-provided drag & drop. This
event type is used when the user can
freely move the activity around, vertically
and horizontally.

Fired whenever the user has started
changing, is in the process of changing,
or has finished changing the end time of
an activity.

Fired whenever the user has started
changing, is in the process of changing,
or has finished changing the time
interval (start and end time) of an
activity. Changing this time interval
makes the activity move horizontally,
either to the right (future) or the left

(past).

Fired whenever the user has started
changing, is in the process of changing,
or has finished changing the
"percentage complete” value of an
activity.

Fired whenever the user has started
changing, is in the process of changing,
or has finished changing the start time of
an activity.

VERTI CAL_DRAG_STARTED set OnActivityVertical DragStarted(); Fired whenever the user has started

o)) dragging, is in the process of dragging,
VERTI CAL_DRAG_ONGO NG set OnActi vityVerti cal DragOngoi ng(); or has finished dragging an activity via
platform-provided drag & drop. This
event type is used when the user can
only drag the activity vertically (reassign
an activity to a different row).

VERTI CAL_DRAG_FI NI SHED set OnActi vityVerti cal DragFi ni shed();

Activity Events Hierarchy

The event types defined in the ActivityEvent class are defining an event hierarchy. All events are input events (InputEvent.ANY) and they
change the activity. Some of them get fired when the user starts the change, some while the change is ongoing, and some when the change is
finished.

® | nput Event . ANY
® ACTI VI TY_CHANGE
® ACTI VI TY_DELETED
® ACTIVI TY_CHANGE_STARTED // Al event types that signal "start"
® CHART_VALUE_CHANGE_STARTED
® CHART_HI GH_VALUE_CHANGE_STARTED
® CHART_LOW VALUE_CHANGE STARTED
®* DRAG_STARTED
* END_TI ME_CHANGE_STARTED
® HORI ZONTAL_DRAG_STARTED
* PERCENTAGE_CHANGE_STARTED
* START_TI ME_CHANGE_STARTED
®* VERTI CAL_DRAG_STARTED
® ACTIVITY_CHANGE ONGO NG // Al event types that signal "ongoing"
® CHART_VALUE CHANGE_ONGO NG
* CHART_H GH_VALUE_CHANGE_ONGO NG
* CHART_LOW VALUE_CHANGE_ONGO NG
* DRAG _ONGO NG
® END_TI ME_CHANGE_ONGO NG
* HORI ZONTAL_DRAG ONGO NG
* PERCENTAGE_CHANGE_ONGO NG
* START_TI ME_CHANGE_ONGO NG
* VERTI CAL_DRAG_ONGO NG
® ACTIVITY_CHANGE FINISHED // Al event types that signal "finished"
® CHART_VALUE_CHANGE_FI NI SHED
® CHART_HI GH_VALUE_CHANGE_FI NI SHED
® CHART_LOW VALUE_CHANGE_FI NI SHED
®* DRAG_FI NI SHED
* END_TI ME_CHANGE_FI NI SHED
® HORI ZONTAL_DRAG FI NI SHED
® PERCENTAGE_CHANGE_FI NI SHED

® START_TI ME_CHANGE_FI NI SHED

* VERTI CAL_DRAG_FI NI SHED

Activity Event Properties

Applications are obviously interested in the attributes of an activity. Not only the new values of these attributes (for example the new start time)
but also the old values (start time before the change). The new values are already available on the activity as they are being set while the user
performs the change. The old values are stored on the event object. The following table lists the methods on ActivityEvent to retrieve these
values.

Method Description Event Types

get O dTi me() Returns the old start or end time of the activity. END_TI ME_CHANGE _
START_TI ME_CHANGE _

get O dTi mel nterval () Returns the old start and end time of the activity. DRAG_
HORI ZONTAL_DRAG _

VERTI CAL_DRAG_

get O dRow() Returns the old row where the activity was located before. DRAG _
VERTI CAL_DRAG_

get A dVal ue() Returns the old value of "percentage complete" or "chart value". CHART_VALUE_CHANGE _
CHART_HI GH_VALUE_
CHART_LOW VALUE_
PERCENTAGE_CHANGE_

Lasso Events

The user can use a lasso to select activities. Events are fired when this happens. To receive a lasso event simply register an event handler with
the graphics view via one of the convenience methods.

...

Singe Lasso Event Handler

G aphi csBase<?> graphics = ganttChart. get G aphics();
gr aphi cs. set OnLassoFi ni shed(evt ->
Systemout.println("The |l asso was used"));

Multiple Lasso Event Handlers
G aphi csBase<?> graphics = ganttChart.get G aphics();
gr aphi cs. addEvent Handl er (LassoEvent . SELECTI ON_FI NI SHED,
evt -> Systemout.println("Listener 1"));
gr aphi cs. addEvent Handl er (LassoEvent . SELECTI ON_FI NI SHED,
evt -> Systemout.println("Listener 2"));

The following table lists the event types and the convenience setter methods of the graphics view.

Event Type Method Description

ALL set OnLassoSel ection() Any lasso operation (start, ongoing, finished).
SELECTI ON_STARTED set OnLassoSel ectionStarted() The user has pressed the mouse button and started a drag. The lasso has
become visible.

SELECTI ON_ONGO NG set OnLassoSel ect i onOngoi ng() The user is changing the size of the lasso.

SELECTI ON_FI NI SHED set OnLassoSel ecti onFi ni shed() The user has finished the lasso selection. The lasso is no longer visible.

Lasso Event Hierarchy

The event types defined in the LassoEvent class are defining an event hierarchy. All events are input events (InputEvent.ANY).
® | nput Event . ANY
® LassoEvent. ALL
® LassoEvent. SELECTI ON_STARTED
® LassoEvent . SELECTI ON_ONGO NG

® LassoEvent. SELECTI ON_FI NI SHED

Lasso Info

The lasso automatically performs selections of activities but sometimes we might want to know more about the exact nature of this selection or we
want to use the lasso for another use case (e.g. for creating new activities). For this reason instances of LassoEvent also provide an object of
type Lassolnfo, which carries many attributes that the application can use to react accordingly. The lasso information can be retrieved by calling
LassoEvent.getinfo(). The following table lists the attributes of Lassolnfo.

Method Description

Li st <Acti vi t yRef <?>> Returns all activities that were selected by the lasso.

getActivities();

Instant getStartTime(); Returns the start and end time of the lasso according to the location of the left and right edge of the lasso.

I nstant get EndTi ne();

Local Ti ne Returns the local start and end time. These values are only provided if the upper or lower edge of the lasso
get Local Start Ti me(); is located in an area that uses the Agendalayout.
Local Ti ne

get Local EndTi me() ;

Li st <Rows?, ?, ?2>> Returns the rows that were touched by the lasso.
get Rows();

Links / Further Reading

® Oracle JavaFX documentation
® Event handling examples

3.4.4 Activity Editing

® |ntroduction

® Edit Mode Callback
® Edit Mode Callback Parameter
® Edit Mode Callback Example

® Editing Callback

http://docs.oracle.com/javase/8/javafx/events-tutorial/events.htm#JFXED117
http://code.makery.ch/blog/javafx-8-event-handling-examples/

® Editing Callback Parameter
® Editing Callback Example

Introduction

Two different callbacks on the graphics view are used to control the editing behaviour of activities. The first maps a mouse event / mouse location
to an editing mode. The second callback is used to determine whether a given editing mode / operation can be applied to an activity at all. Most
applications will only need to work with the second callback and keep the defaults for the edit mode locations (for example: right edge used to
change end time, left edge used to change start time). The enum GraphicsBase.EditMode lists all available editing operations that can be
performed on an activity.

Mode Description

AGENDA_ASSIGNING Assign an activity in Agendalayout to another row.
AGENDA_DRAGGING Drag an activity in AgendalLayout up and down or sideways within the same row.
AGENDA_END_TIME_CHANGE Change the end time of an activity in Agendalayout.
AGENDA_START_TIME_CHANGE Chagne the start time of an activity in AgendalLayout.
CHART_VALUE_CHANGE Change the value of a ChartActivity.

CHART_VALUE_HIGH_CHANGE Change the "high" value of a HighLowActivity.
CHART_VALUE_LOW_CHANGE Change the "low" value of a HighLowActivity.

DRAGGING Perform a drag and drop in all directions on an activity.
DRAGGING_HORIZONTAL Move an activity horizontally within its own row (change start and end time).
DRAGGING_VERTICAL Perform a drag and drop on an activity in vertical direction only.
END_TIME_CHANGE Change the end time of an activity.

NONE Do nothing.

PERCENTAGE_COMPLETE_CHANGE Change the "percentage complete” value of a CompletableActivity.

START_TIME_CHANGE Change the start time of an activity.

Edit Mode Callback

The edit mode callback is used to determine the edit mode at the given mouse location. Instances of this callback can be registered via the Graph
icsBase.setEditModeCallback() method which maps the callback to a combination of activity type and layout type.

Edit Mode Callback Registration

public final void setEditMdeCall back(
Cl ass<? extends Mitabl eActivity> activityType,
Cl ass<? extends Layout> | ayout Type,
Cal | back<Edi t ModeCal | backPar anmet er, Edit Mbde> cal | back) ;

Edit Mode Callback Parameter
The parameter object passed to the edit mode callback is of type EditModeCallbackParameter and contains the following information:

Field Description

activityBounds = The bounds of the activity over which the mouse cursor is hovering. The x and y coordinates are relative to the coordinate
space of the row where the activity is displayed.

mouseEvent The mouse event that triggered the lookup of the edit mode (normally a MOUSE_OVER).

Edit Mode Callback Example

The following is a simple example of an editing mode callback.

...

Edit Mode Callback Example

public class M/EditMdeCal | back inpl ements
Cal | back<Edi t ModeCal | backPar anet er, Edit Mode> {

public EditMde call (EditMdeCal | backParaneter paran) ({
MouseEvent event = param get MbuseEvent ();
Acti vi t yBounds bounds = param get Acti vityBounds();

/*

* |f the mouse cursor is touching the left edge of the activity
* then begin a change of the start time of the activity.

*/

if (event.getX() - bounds.getMnX() < 5) {

return EditMde. CHANGE_START_TI ME;

}

return Edit Mode. NONE;

...

Edit Mode Callback Registration

G aphi csBase<?> graphics = ganttChart. get Gaphics();
gr aphi cs. set Edi t ModeCal | back(

Activi tyBase. cl ass,

Gantt Layout . cl ass,

new MyEdi t ModeCal | back());

We could have used a lambda expression for the entire callback instance but decided against it in favor of verbosity.

Editing Callback

The editing callback is used to determine if a specific edit mode is currently usable for a given activity. Instances of this callback can be registered
via the GraphicsBase.setActivityEditingCallback() method which maps the callback to an activity type.

...

Edit Mode Callback Registration

public final void setActivityEditingCallback(
Cl ass<? extends Mitabl eActivity> activityType,
Cal | back<Edi ti ngCal | backPar anet er, Bool ean> cal | back);

Editing Callback Parameter

The parameter object passed to the editing callback is of type EditingCallbackParameter and contains the following information:

Field Description
activityRef = The reference to the activity for which to perform the check.

editMode The edit mode that needs a check.

Editing Callback Example

The following is a simple example of an editing mode callback.
Edit Mode Callback Example

public class MyEditingCall back inplements
Cal | back<Edi ti ngCal | backPar anet er, Bool ean> {

publ i c Bool ean call (EditingCal | backParaneter param {
ActivityRef ref = paramgetActivityRef();
Activity activity = ref.getActivity();

/*

* Only allow editing for activities that that have not
* started, yet.

*/

if (activity.getStartTinme().isAfter(lnstant.now())) {

/*
* Only allow changes to the start and end tine
* of the activity.
*/
swi tch (param get Edi t Mode()) {
case CHANGE _START_TI ME:
case CHANGE_END TI ME:
return true;
def aul t:
return fal se;
}
}

return fal se;

...

Editing Callback Registration

G aphi csBase<?> graphics = ganttChart. get G aphics();
graphi cs. set Acti vityEditingCal | back(

ActivityBase. cl ass,

new MyEdi tingCal | back());

3.4.5 Row Editing

¢ Introduction

® Row Editor Factory

® Row Controls Factory
® Example 1
® Example 2

Introduction

The graphics view not only supports editing activities but also rows. If a row gets edited the entire row will be flipped around and additional
controls will become visible on the "back” of the row. If the back of the row requires more space (height) than the front of the row then the height
will be automatically adjusted. The following table lists the methods that are related to row editing:

Method Description

void startRowEditing(R row; Initiates the row editing sequence on the given row. The back of the row will become visible
and expose controls to change row settings.

voi d st opRowEdi ting(); Stops the row editing of all rows or just the given row. The front of the row will become visible
again.

voi d st opRowEdi ting(R row);

bj ect Propert y<RowEdi ti nghMbde> Stores, sets, and retrieves the row edit mode. The enum GraphicsBase.RowEditingMode is
rowEdi ti ngModeProperty(); used to determine whether the user will be able to edit rows at all, one row at a time, or
. multiple rows at the same time.
voi d
set RowEdi t i ngvbde(Rowkdi ti nghbde) ;

RowEdi t i nghbde get RowEdi ti nghbde() ;
Qbservabl eLi st <R> get RowsEdi ting(); An observable list of all rows that are currently being edited (their back is shown).

Bool eanProperty ani mat eRowEdi tor(); Stores, sets, and retrieves a flag that is used to signal whether the exposure of the row back
) .) will be immediate or animated.
voi d set Ani mat eRowEdi t or (bool ean) ;

bool ean i sAni mat eRowEdi t or () ;

Row Editor Factory

The row editor factory is used to create the controls for a given row at the moment when the user requests that the row will be edited. The factory
is a callback method that gets called with a GraphicsBase.RowEditorParameter object. This parameter object stores some fields that can be
useful for creating the editor controls and also a method for stopping the row editing.

Method Description

G aphi csBase Returns a reference to the graphics view where the editing will occure.
get G aphi cs();

R get Row() ; Returns the row for which the row editor will be created.
voi d A convenience method for the row editor controls that can be used to signal that the user is done editing the row. This
st opEdi ting(); method will usually get invoked by some kind of close button in the editor Ul:

A row editor factory might look like this:

Row Editor Example

public class MyRowEditor Factory inplenents
Cal | back<RowEdi t or Par anet er <R>, Node> {

publ i c Node cal | (RowEdi t or Par anet er <R> paran) ({
VBox box = new VBox();

/*
* Bind the text property of the textfield to the nane
* property of the row This allows us to change the nane
* of the row.
*/
TextField naneField = new TextField();
Bi ndi ngs. bi ndBi di recti onal (param get Row() . nanePr operty(),
nameFi el d. t ext Property());

/*
* A close button to invoke the stopEditing() nethod
* on the paraneter object.
*/
Button cl oseButton = new Button("d ose");
cl oseButton. set OnActi on(evt -> param stopEditing());
box. get Chi I dren() . addAl | (naneFi el d, cl oseButton);

/*

* Return the vbox node.
* [

return box;

Row Editor Registration

G aphi csBase<?> graphics = ganttChart. get G aphics();
gr aphi cs. set RowEdi t or Fact or y(new MyRowEdi t or Factory());

Row Controls Factory

To trigger row editing the user interface needs to provide some kind of controls. This can be done in many ways, for example by the help of a
context menu on a row. Another way is to use the built-in support for so-called "row controls". These controls appear / disappear every time the
mouse cursor enters / exists a row. They are created by a callback implementation. This callback receives a parameter object of type GraphicsB
ase.RowControlsParameter. The following table lists the fields of this type.

Field Description
graphics = The graphics view for which the callback gets invoked.

row The row for which controls will be created.

Example 1

A possible implementation of this callback can look like this:
Row Controls Factory

public class MyRowControl sFactory extends StackPane
i mpl ements Cal | back<RowCont r ol sPar anet er, Node> {

private Button button;
public MyRowControl sFactory() {

/*
* |nportant: |et nouse events pass through.
*/

set MbuseTransparent (true);

button = new Button("Press M");

get Chil dren(). add(button);

}

/*
* Reuse the button. Sinply exchange the action that wll
* happen when the user presses on it.
*/
publ i c Node cal | (RowControl sParaneter param {
button. set OnActi on(evt ->
Systemout.println("Pressed on row " +
param get Row() . get Nane());
return this;

Please take notice that this factory is a Node object and returns itself every time the call() method gets invoked. Only the action of the
button gets replaced with each inocation. This makes perfect sense as row controls are always only shown for one row at a time (as
opposed to row editors where several of them can be in use at the same time).

The callback can be registered like this:

Row Controls Factory Registration

G aphi csBase<?> graphics = ganttChart. get G aphics();
gr aphi cs. set RowCont r ol sFact ory(new MyRowCont rol sFactory());

Example 2

The following is the code of the RowControls class in the FlexGanttFX "Extras" project. It adds a simple "Edit" button to the row. When clicked it
will show the row editor controls on the back on the row.

RowControls.java
/**
* Copyright (C) 2014 Dirk Lemmernann Software & Consulting (dl sc.com
* This file is part of FlexGanttFX
*/
package com fl exganttfx. extras;

i mport j avaf x. geonetry. Pos;

i mport j avaf x. scene. Node;

i mport j avaf x. scene. control . Button;

i mport javaf x. scene. | ayout . HBox;

i mport javafx.util.Call back;

i mport com fl exganttfx. nodel . Row,

i mport com fl exganttfx.view. graphics. G aphi csBase. RowCont r ol sPar anet er;

public class RowControl s<R extends Row?, ?, ?>> extends HBox inplenments
Cal | back<RowCont r ol sPar anet er <R>, Node> {

private Button editButton;

public RowControl s() {
set Pi ckOnBounds(f al se);
setM nSi ze(0, 0);
set Al i gnment (Pos. TOP_RI GHT) ;
setFill Hei ght (true);
editButton = new Button("ED T");
edi t Button. get Styl ed ass().add("rowcontrol s-button");
get Chil dren(). add(edi tButton);

}

@verride
public Node cal | (RowContr ol sParamet er <R> param {
edi t Button. set OnActi on(evt -> param get G aphi cs(). start RowEditi ng(
param get Row()));
return this;
}
}

The matching CSS for the button is defined like this:

RowControls Button CSS

/*

* Row controls button are shown when the nouse hovers over a row that can
be

* edited (flipped around).

* [

.rowcontrol s-button {

-fx-padding: 59 7 7;
-fx-background-insets: 0 4 2 2;

- f x- background-col or: rgba(0,0,0,.5);
- f x- background-radi us: O0;
-fx-text-fill: white;
-fx-font-size: 8;
-fx-font-weight: bold;

}

. rowcontrol s-button: hover,

.row control s-button: focused {
-fx-padding: 59 7 7;
- fx- background-insets: 0 4 2 2;
- f x- background-col or: rgba(0,0,0,.6);
- f x- background-radi us: O0;
-fx-text-fill: white;
-fx-font-size: 8;
-fx-font-wei ght: bold;

}

.row control s-button: pressed,
.rowcontrol s-button: sel ected {

- f x- background-col or: rgbha(0,0,0,.7);
- f x- background-radi us: O0;

3.4.6 Activity Rendering

Introduction
Drawing

Default Renderers
Activity Bounds
Properties

Introduction

The graphics view uses the canvas API of JavaFX. This is due to the complex nature of a Gantt chart and due to the large data volumes often
observed inside of them. Directly rendering large quantities of activities into a bitmap is much faster than constantly updating the scene graph and
reapplying CSS styling. FlexGanttFX implements a pluggable renderer architecture where renderer instances can be mapped to activity types,
very similar to the way Swing was doing it.

The following code is an example of how to register a custom renderer for a given "Flight" activity type. Please note that the graphics view is
capable of displaying activities in different layouts, hence the layout type must also be passed to the method.

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/canvas/Canvas.html

Renderer Registration

G aphi csBase<?> graphics = ganttChart. get Gaphics();
graphi cs. set Acti vi t yRenderer (

Fl i ght.cl ass,

Gant t Layout . cl ass,

new Fl i ght Render er (graphics));

We usually also pass the graphics view to the renderer at construction time. This is needed as renderers will invoke a redraw on the
graphics when any of its properties changes. This is very different to the Swing approach. This also implies that renderer instances
should only be used for a single graphics view, the one that was passed to their constructor.

The following methods on GraphicsBase are used for working with renderers:

Method Description

voi d setActivityRenderer(...); Registers a new renderer for the given activity and layout type.

ActivityRenderer getActivityRenderer(...); Returns arenderer for the given activity and layout type.

Drawing

Activity renderers have a single entry point for drawing, a method called draw(). This method is final and can not be overriden. Once invoked it
will call various protected methods to perform the actual drawing. The call hierarchy looks like this:

® public final draw() calls ...
® protected ActivityBounds drawActivity()
® protected void drawBackground()
® protected void drawBorder()

Subclasses are free to override any of the three protected methods to customize the activity appearance.

All drawXXX() methods have the same arguments:

...

Arguments

ActivityRef<A> activityRef, [// the activity to draw

Position position, /1 agenda |ayout only (first, mddle, last, only)
G aphi csCont ext gc, /1 the graphics context into which to draw
doubl e x, /1 the location of the start tine of the activity

doubl e v, /1 the y coordinate (0 when drawn on row or |ine |ocation)
doubl e w, /1 end tinme location minus start tine |ocation

doubl e h, /1 row or line height

bool ean sel ect ed, /1 is activity currently sel ected?

bool ean hover, /1 is mouse cursor currently hovering over it?

bool ean hi ghli ght ed, /1 is activity currently blinking?

bool ean pressed) /1 is user currently pressing on it?

Default Renderers
The following table lists the various activity renderers that are provided by default.

Renderer Class Description

Activi t yRenderer The most basic renderer for activities. Draws a filled rectangle at the location of the activity. All default
renderers are subclasses of this type.

Acti vi t yBar Render er Draws a bar instead of filling the entire area. The height of the bar can be specified.

Also supports text in several locations inside and outside the bar.

Chart Acti vi t yRender er Draws a ChartActivity vertically depending on its chart value.

Conpl et abl eActi vityRenderer Subclass of the bar renderer. Draws a CompletableActivity as a bar with a section of its background
filled with another color. The size of the section depends on the percentage complete value of the
activity.

These default renderers are attached to this page and can be downloaded here:

File Modified *

Oct 07, 2014 by Dirk

* @ ChartActivityRenderer.java Lommermann [Administrator]

Base renderer for chart activities.

Oct 07, 2014 by Dirk

» @ ActivityRenderer.java
Lemmermann [Administrator]

The base class for all activity renderers.

Oct 07, 2014 by Dirk

b @ ActivityBarRenderer.java
Lemmermann [Administrator]

The base class for all activity renderers that want to display a thin bar.

Oct 07, 2014 by Dirk

b @ CompletableActivityRenderer.java Lommermann [Administrator]

Base renderer for completable activities.
* Download All

Activity Bounds
Every activity renderer is responsible for returning an instance of ActivityBounds after drawing the activity. These bounds are an essential piece

for the framework and many operations will only work properly if these bounds are valid. They are being used for editing activities, for hitpoint
detection, for laying out links, for context menus, and so on. The following table lists the attributes of the ActivityBounds class.

Attribute Description

activity The activity for which these are the bounds.

activityRef = An activity referene pointing to the activity.

layer The layer on which the activity was drawn.

layout The layout that was used when the activity was drawn.

lineiIndex The index of the line on which the activity is located (-1 if activity is on the row, not a line).

position The position of the bounds when the activity was drawn in agenda layout (first, middle, layout). This is needed becaue the same
activity might be rendered in several pieces across several days.

row The row where the activity was drawn.

Please ignore the attributes overlapColumn, overlapCount, and the list overlapBounds. These are all used internally for agenda
layout related operations.

Properties

All renderers define several properties that can be used to customize their apperance. Many of these properties are depenent on the "pseudo
state" of the activity: hover, pressed, selected, highlighted. To make it easier to lookup the right color at the right time several convenience

https://flexgantt.atlassian.net/wiki/download/attachments/491747/ChartActivityRenderer.java?api=v2
https://flexgantt.atlassian.net/wiki/download/attachments/491747/ActivityRenderer.java?api=v2
https://flexgantt.atlassian.net/wiki/download/attachments/491747/ActivityBarRenderer.java?api=v2
https://flexgantt.atlassian.net/wiki/download/attachments/491747/CompletableActivityRenderer.java?api=v2
https://flexgantt.atlassian.net/wiki/download/all_attachments?pageId=491747

methods are available:

Renderer Method Description

Render er protected Paint getFill(bool ean sel ected, Returns the color to use for the activity
bool ean hover, background depending on pseudo states
bool ean hi ghl i ght ed, passed.

bool ean pressed);

Acti vi t yRenderer prot ected Paint get Stroke(bool ean sel ect ed, Returns the color to use for the activity border
bool ean hover, depending on pseudo states passed.
bool ean hi ghli ght ed,
bool ean pressed);

ActivityBarRenderer protected Paint getTextFill (boolean sel ected, Returns the color to use for text depending on
bool ean hover, pseudo states passed.
bool ean hi ghli ght ed,
bool ean pressed);

3.4.7 Row Rendering

¢ Introduction

®* Row Renderer
Introduction
The system layer RowLayer supports pluggable renderers in order to customize the background of each row depending on the row type. In the
tutorial we have seen that we can have Aircraft rows and Crew rows. For clarity these two rows could have different background colors. This is
something that could be done with a row renderer.
Row Renderer

All row renderers have to subclass RowRenderer. This class defines a final public method called draw() that gets called by the framework. It then
calls the protected method drawRow() which subclasses can override. A possible implementation might look like this:

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/Paint.html?is-external=true
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/Paint.html?is-external=true
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/Paint.html?is-external=true

Custom Row Renderer

public class Aircraft RowRenderer extends RowRenderer<Aircraft> {

public AircraftRowRenderer (G aphi csBase<?> graphics) {
super (graphics, "Aircraft Row Renderer");

}

protected void drawRow Aircraft row,

Graphi csCont ext gc,
doubl e w,
doubl e h,
bool ean sel ect ed,
bool ean hover,
bool ean hi ghli ght ed,
bool ean pressed) {

gc.setFill (Col or. ORANGE) ;

gc.fill Rect (0, 0, w, h);

...

Row Renderer Registration

G aphi csBase<?> graphics = ganttChart. get Gaphics();
gr aphi cs. get Syst enlLayer (RowLayer . cl ass) . set RowRender er (
Aircraft.class, new AircraftRowRenderer());

The RowRenderer base implementation is attached to this page and can be downloaded here:

File Modified *
b @ RowRenderer.java Oct 07, 2014 by Dirk -
Row renderer base implementation. Lemmermann [Administrator]

3.4.8 Context Menu

® Introduction
® Code Example

Introduction

There are two ways to register a context menu with the graphics view. The standard way by calling GraphicsBase.setContextMenu(ContextMe
nu) or by registering a context menu callback by calling GraphicsBase.setContextMenuCallback(). The advantage of the second option is that
a parameter object of type ContextMenuParameter will be passed to the callback method. This paramter object contains the most relevant
parameters that most context menus will require in order to let the user perform some kind of action on the graphics view.

Please note that a context menu callback will have precedence over a standard context menu.

https://flexgantt.atlassian.net/wiki/download/attachments/492288/RowRenderer.java?api=v2

Code Example

The following snippet shows an example of a context menu callback implementation. Here we simply add a menu item for each activity that was
found at the mouse location where the context menu was requested by the user.

Context Menu Callback

G aphi csBase<?> graphics = ganttChart. get Gaphics();
gr aphi cs. set Cont ext MenuCal | back(param -> {
Cont ext Menu menu = new Cont ext Menu() ;
for (ActivityRef<?> ref : paramgetActivities()) {
Activity activiy = ref.getActivity();
Menultemitem = new Menultem("Mowve " + activity.getNanme());
item set OnActi on(evt -> nmoveActivity(activity);
menu. getltens().add(iten);
}

return nenu,

});

3.6 Timeline

Navigation

Zooming

Scrolling
TimeTracker

Visible Time Interval

The timeline control is a container for the Dateline and the Eventline. It is displayed above the Graphics control and provides several methods for
scrolling and zooming, both of which can be done with or without animation. The timeline also keeps track of the current time (see TimeTracker).

W17, Monday 21. April 14 W 18, Monday 28. April 14 W 18, Monday 5. May 14
21 22 23 24 25 26 2F 2B 29 30 O 02 03 04 05 06 OF 08 09 10 1

Apr 27, 2014 6:37:07 AM

Navigation

The timeline is used to navigate through time. It provides methods to jump to the current time or a given time. It can be requested to show a
specific time unit ("show days"), or a time range.

Method Description

showNow() Changes the start time of the timeline model in such a way that the current time (as already stored in
the TimelineModel) will be displayed either on the left edge of the dateline or right in the middle.
showNow(bool ean center)

showTi me(l nstant tine) Changes the start time of the timeline model in such a way that the given time will be displayed either

. . on the left edge of the dateline or right in the middle.
showTi me(l nstant tinme,

bool ean center)

showRange(| nstant start, Changes the start time and the "millis per pixel" value of the timeline model in such a way that the
I nstant end) given time range will become fully visible in the dateline.

showRange(| nstant start,
Dur ati on duration)

showRange(Ti mel nt erval range)

showTenpor al Uni t (Tenporal Unit Changes the start time and the "millis per pixel" value of the timeline model in such a way that the
uni t, double width) given time unit will be used in the dateline. Each cell in the dateline will be as wide as the given width.

It should be noted that the timeline in cooperation with the dateline can only make a best-effort attempt at fulfiling these requests as
they depend on the availability of dateline resolutions in the dateline model.

The methods above can be executed with or without animation. This animation can be controlled via the help of two properties: moveAnimated a
nd moveDuration. The appropriate getter and setter methods for these properties are available on Timeline.

Zooming

The timeline is responsible for managing anything related to zooming. The user can press the + / - keys to increase the zoom level by a specific
zoom factor or he can select a time interval via a "lasso" by dragging the mouse and holding down the SHIFT key. The result will be a selected
time interval which is stored in the read-only property selectedTimelnterval. The timeline listens for changes to this property and will
automatically try to display the selected time interval across the entire available width, ultimately causing a zoom in operation.

Method Description

zoom n() Makes the timeline modify the timeline model in such a way that the resulting visible time range will
be the current time range multiplied by / divided by the current zoom factor.

zoonQut ()

zoonm(doubl e factor, bool ean Performs a zoom operation with the given zoom factor (either zoom in or out). The timeline will try to

zoom n, Instant frozenTime) keep the given "frozen" time at its current location. This kind of behaviour is very useful for a

pinch-based zoom, where the Ul zooms "into" a specific time.

set ZoormLassoEnabl ed(bool ean); Controls the availability of the zoom lasso.

bool ean i sZoonmLassoEnabl ed();

Just like the moving operations the zoom operations can also be executed in an animated or non-animated way. To control this the two properties
zoomAnimated and zoomDuration are available.

Another property is used to fine-tune the zooming behaviour as some applications prefer to either keep the start time, the end time, or the center
time while zooming. For this the application can set the zoomMode property. Possible values of this enum are KEEP_START_TIME, KEEP_END
_TIME, or CENTER.

Scrolling

The timeline supports scrolling to the left and right in two different speeds.

Method Description
scrol | Left() Changes the start time property of the timeline model in such a way that the dateline will end up starting with an earli
er time.

scrol | Left Fast ()

scrol | Right () Changes the start time property of the timeline model in such a way that the dateline will end up starting with a later ti

scrol | R ght Fast ()

These methods can be invoked by the user via the and _ keys. Scrolling will be fast if the user presses
SHIFT at the same time.

TimeTracker

The timeline control is responsible for tracking time. This means that it updates the property now of the underlying timeline model. The timeline
implements methods for starting and stopping time tracking, however the actual update of now will be delegated to a time tracker class.

Method Description

start Ti meTr acki ng() Starts and stops time tracking. These methods invoke the equivalent methods on the TimeTracker class.

st opTi meTr acki ng()

The time tracker property and its getter and setter methods. The default time tracker (uses the system
time) can be replaced with a custom one.

timeTracker Property()

set Ti meTracker (Ti meTr acker
tracker)

Ti meTr acker
get Ti meTr acker ()

Visible Time Interval

Two read-only properties are keeping track of the earliest and latest times shown by the timeline . They are
called visibleStartTime and visibleEndTime and the methods getVisibleStartTime(), getVisibleEndTime(),

and getVisibleDuration() can be used to work with them.

3.5.1 Timeline Model

Introduction

Start Time & Millis Per Pixel
Now Time / Now Location

Time & Coordinate Calculations
The Horizon

Highest & Lowest Temporal Unit

Introduction

The timeline uses a model of type TimelineModel. This model provides the most important parameters for the timeline and the dateline in order
for them to work properly. The timeline model can by typed for different temporal units. FlexGanttFX ships with a ChronoUnitTimelineModel and

a SimpleUnitTimelineModel.

Start Time & Millis Per Pixel

The two most important properties of the TimelineModel are the startTime and the millisPerPixel (MPP) properties. The start time determines
the first visible time in the Gantt chart while the current width of the timeline in combination with the MPP value determine the last visible time and
hence the visible time range. Increasing the MPP value will cause the timeline to show a larger time range while reducing this value will result in a
shorter time range. The methods found in the Timeline class for showing a time, scrolling to a time, zooming into a range are all playing with these
two variables to achieve their purpose. The following table lists the methods related to these properties:

Method Description

oj ect Property<I nstant > Stores, sets, and retrieves the current start time, the first visible time in the Gantt chart.
start Ti meProperty();
The earliest possible start time can be restricted via the horizonStartTime proper

setStartTime(l nstant tine);
ty.

Instant getStartTine();

Doubl eProperty millisPerPixel(); Stores, sets, and retrieves the millis per pixel value (mpp).

set M | |isPerPi xel (doubl e npp);
The default value of mpp is 24 * 60 * 60 * 1000 / 30. This results in days having

doubl e getM I 1isPerPixel (); the width of 30 pixels.

Now Time / Now Location

Gantt charts often have a requirement to mark the "current" time. This time can either be the system time (java.time.Instant.now()) or an
arbitrary value controlled by the application. The latter is often the case in software that runs some kind of simulation and the Gantt chart is used
to track the simulation time. To support these use cases the timeline model defines a property called now.

The value of now is usually updated by a time tracker that can be controlled via the timeline.
Method DescriptionDesDesdf

Qbj ect Property<instant> Stores, sets, and retrieves the current time.

nowPr operty();

voi d set Now(| nst ant

now) ;

I nstant get Now(); now

Stores and retrieves the location of the current time. The now location is calculated by the model based on

ReadOnl yDoubl eProperty
the start time, and the millis per pixel value.

nowLocati on();

doubl e
get NowLocation(); This property is a read-only property as the now location is always dependent on the value of the
now time. The location can only changed by changing now itself.

Time & Coordinate Calculations

The primary purpose of the timeline model is to convert time into a location and vice versa. For this the model provides several methods:

Method DescriptionD

doubl e cal cul at eLocati onFor Ti me(l nstant); Returns the x coordinate for the given time.

I nst ant Returns the time for the given x coordinate.

cal cul at eTi neFor Locat i on(doubl e) ;

The Horizon

Scheduling applications often work with a horizon, defined by an earliest and latest time. These times might be based on the loaded dataset (min /
max calculation of the start and end times of the activities) or the planning horizon (Q1, Q2, Q3, Q4). Setting the values of horizonStartTime and

horizonEndTime ensures that the user will not be able to scroll to a time outside the horizon.

Highest & Lowest Temporal Unit

Not all applications require all available units of a temporal unit. java.time.temporal.ChronoUnit for example defines units for nanos until
millennia. The highestTemporalUnit and the lowestTemporalUnit property enable the application to restrict the unit range to something more

sensible, e.g. hours to months.
3.5.2 Time Tracker

® |ntroduction
® Example

Introduction

A time tracker is used to update the property now of the TimelineModel. In most cases the time "now" will be equivalent to the system time but in
simulation software this might not be the case. The time tracker is used by the timeline and can be replaced by calling Timeline.setTimeTracker(
TimeTracker). However, a default tracker is already installed and can be started by calling Timeline.startTimeTracking().

Example

The following is the entire code of the default time tracker class.

TimeTracker
/**
* Copyright (C) 2014 - 2016 Dirk Lermmernann Software & Consulting
(dl sc.com
* This file is part of FlexGanttFX
*/
package com fl exganttfx.view tineline;

i mport java.tinme.lnstant;
i mport java.util.logging.Level;

i mport com fl exganttfx. core. Loggi ngDomnai n;
i mport com fl exganttfx.nodel.tineline.TinelineModel;

i mport j avaf x. application. Pl atform
i mport j avaf x. beans. property. ReadOnl yCbj ect Property;
i mport | avaf x. beans. property. ReadOnl yObj ect W apper;

/**

* Atinme tracker can be used to update the property

* {@ink TinmelineModel #nowProperty()}. In nost cases the time "now' will
be

* equivalent to the systemtine but in sinmulations this mght not be the
case.

* The tinme tracker can be used in conbination with the {@ink

Ti el i neMbdel } by

* binding the {@ink TinelineMddel #nowProperty()} to the

* {@ink TinmeTracker#ti meProperty()}.

*

* @ince 1.0

*/

public class TineTracker extends Thread {

private bool ean running = true;
private | ong delay = 1000;

private bool ean stopped,;

/**

* Constructs a new tracker.

*

* @ince 1.0
*/
public TineTracker() {
set Nane("Ti ne Tracker");
set Daenon(true);

}

private final ReadOnl yObj ect Wapper<instant> tinme = new
ReadOnl yOhj ect W apper <>(
this, "time", Instant.now());

public final ReadOnl yQhjectProperty<instant> tinmeProperty() {
return tine.get ReadOnl yProperty();

}

public final Instant getTinme() ({
return tine.get();

}

/**

* Returns the delay in mlliseconds between updates of
* {@ink TinelineMdel #nowProperty()}. The default is 1000 mllis.
* @eturn the default delay between update calls
* @ince 1.0
*/
public final |ong getDelay() {
return del ay;

}

/**

* Sets the delay between updates of {@i nk
Ti el i neMbdel #nowPr operty()}.

* The default is 1000 mllis.

*

* @arammllis

* the new del ay

* @hrows 111 egal Argunent Excepti on

* if the delay is zero or smaller
* @ince 1.0

*/

public final void setDelay(long mllis) {
if (mllis <= 0) {
throw new |11 egal Argunent Excepti on(
"del ay nust be larger than zero but was" + nmllis);
/1 SNON- NLS- 1%
}

this.delay = mllis;

/**

* Starts the tracking of the tine.

*

* @ince 1.0

*/

public final void startTracking() {

if (stopped) {
throw new I |1 egal St at eExcepti on(
"Time tracker has al ready been stopped and can not be

started again.");

} else {
running = true;
start();
}
}
@verride

public void run() {
while (running) {
PlatformrunLater(() -> tine.set(getNow()));
try {
Thr ead. sl eep(del ay) ;
} catch (InterruptedException e) {
Loggi ngDomai n. CONFI G. | og(Level . WARNI NG,
"problemin update thread", e); //$NONNLS-1$%

}

/**

* Stops the tracking of the tine.
* @ince 1.0
*/
public final void stopTracking() {
stopped = true;
runni ng = fal se;

}

/**

* Querride to return the instant that will be set as "now' on the
tineline

* nodel. The default inplenentation uses {@ink |Instant#now)}.

*

* @ee TinelineMdel #set Now | nst ant)
*

* @eturn the "now' instant

*/

protected Instant get Now) {

return Instant.now();

—

3.7 Dateline

Introduction

Scale Resolutions
Primary Temporal Unit
Timezone

Selection Model
Hover Time Interval
Events

Cell Factory

Introduction

The dateline is a control that displays the actual dates (Mo, Tu, We, ...) in cells that are placed on one or more rows. The dateline is timezone
aware, keeps track of currently selected time intervals and the current hover time interval. It also fires events whenever the visible time range
changes (e.g. after scrolling left or right).

Scale Resolutions

The dateline can display one to five rows. Each row is called a "dateline scale" and each one of these scales displays a "resolution". A resolution

is comprised of a temporal unit (e.g. day, week, month), a pattern for formatting, and a quantity. The quantity is needed to specify resolutions like
"5 minutes", "15 minutes”, and so on. The entire list of resolutions that are currently shown by the dateline can be retrieved by calling getScaleRe
solutions().

One example for a use of this method is given by the system layer GridLinesLayer. It calls this method in order to use the resolutions to calculate
the locations of the vertical grid lines. For this the Resolution class offers the methods truncate() to go to the beginning of a unit (e.g. the
beginning of a day) and increment() to go to the next unit (e.g. the next day). For more information on Resolution please go to the dateline
model documentation.

Primary Temporal Unit

A dateline with three scales could for example display the resolutions "month", "week", and "day". The smallest resolution "day" gets displayed at
the bottom of the dateline. The temporal unit ChronoUnit.DAYS that is used by this resolution is also called "primary temporal unit". The current

value of this unit is stored in the read-only property primaryTemporalUnit. The value of this property is used when querying activities from activit
y repositories. This way the repository can decide how fine-grained the result of its invocation will be or if certain activities will not be shown at all.

One example for a good use of the primary temporal unit is the WeekendCalendar class. It implements Calendar, which is an extension of Activi
tyRepository. The purpose of the WeekendCalendar is to return the weekend days (Saturday, Sunday) for a given time interval. When it gets
invoked it will not return anything if the primary temporal unit is too large or too small. It makes no sense to return weekend information if the user
is currently looking at minutes or decades.

Timezone

The dateline needs to know for which timezone it is displaying the dates (e.g. EST or GMT). Hence it features the property zoneldProperty(). It is
writable and can be set via setZoneld(). The value of this property can be made visible in the control by calling setZoneld(true).

Selection Model

The dateline control allows the user to perform single or multiple selections of time intervals by clicking the primary mouse button while pressing
the shortcut modifier key (CTRL on Windows / Linux, Option on Mac). Whether single or multiple selection is supported depends on the value of s
electionModeProperty().

Only those intervals can be selected that are currently visible in any one of the rows / scales. So if the dateline is currently showing weeks and
days then the user can only select an entire weeks or entire days. This list of selected intervals can be retrieved by calling getSelectedTimelnter
vals().

Hover Time Interval

When the mouse cursor hovers over the dateline it also implies that it is hovering over a time interval. Depending on the resolution shown in the
dateline row / scale at the given mouse location the interval might be an entire week or a single day. Whatever it is, the interval will be stored in
the read-only property hoverTimelntervalProperty().

Events

Applications can listen to scrolling events fired by the dateline when they need to react to any changes in the currently visible time range.This is
done by passing an event listener to the setOnVisibleRangeChanged() method or by calling addEventListener(DatelineScrollingEvent.ANY,
myListener).

Cell Factory

The dateline control is capable of displaying different types of temporal units. ChronoUnit (Mon, Tue, Wed,) and SimpleUnit (1, 2, 3, 4, ...) are
supported by default. Each unit type has its own visual representation. To accomodate for this the dateline control delegates the creation of
dateline cells to a pluggable factory that was previously mapped to a specific temporal unit type.

Cell Factories

i setCell Factory(SinpleUnit.class, §
. unit -> new SinpleUnitDatelineCell());
. setCel | Factory(ChronoUnit.cl ass,
unit -> new ChronoUnitDatelineCell());

If a new temporal unit type needs to be displayed then a new factory needs to be registered in the same way.

3.6.1 Dateline Model

® |ntroduction
® Chrono Unit Dateline Model
® Simple Unit Dateline Model
® Timezones

Introduction

The dateline model provides the dateline control with various pieces of information so that it can layout itself correctly.

® Resolutions - a resolution defines which temporal unit to show (e.g. hours) and how to format it. It also contains the information whether
it can be shown in a top, bottom, or middle scale. Each model usually defines a long list of such resolutions. The more resolutions are
defined the more flexible the dateline control becomes when it comes to zooming in and out.

® Time Zones - The dateline control allows the user to switch between different time zones. The model defines which zones are available.

® Scale Count - The dateline control is composed of a set of dateline scales (top, bottom, several middle scales). The model can be used
to define the currently visible, the minimum and the maximum number of scales that the user can choose to see.

®* Temporal Units - The dateline control calls back onto the model to lookup the "next" temporal unit after it has either failed or succeeded
to create a scale for the current unit.

The dateline model is a typed model. FlexGanttFX ships with two specializations: ChronoUnitDatelineModel and SimpleUnitDatelineModel.

Chrono Unit Dateline Model

The ChronoUnitDatelineModel class is a specialization for the ChronoUnit temporal that is part of JDK 8. It requires scale resolutions of type C
hronoUnitResolution. The following listing is the implementation of this model and illustrates how to define and add resolutions and also how the
resolution is used to go to from one temporal unit to the next.

ChronoUnitDatelineModel

N |

* Copyright (C) 2014 Dirk Lemmernmann Software & Consulting (dl sc.com

*

* This file is part of FlexGanttFX

*/

package com fl exganttfx. nodel . datel i ne;

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati

O 0O 0O 00000000000 O0

C

com fl exganttfx.
com fl exganttfx.
com fl exganttfx.
com fl exganttfx.
.t enpor al
.t enpor al
.t enpor al
. tenpor al
.t enpor al
.t enpor al
.t enpor al
.t enpor al
. tenpor al
.t enpor al
. tenpor al
.t enpor al

j ava
j ava
j ava
j ava
j ava
j ava
j ava
j ava
j ava
j ava
j ava
j ava

St
St
St
St
St
St
St
i
St
St
St
St

idsdddddaddad ®

java.tine.tenporal . ChronoUnit;

public final
Dat el i neModel <Chr onoUni t > {

cl ass ChronoUni t Dat el i neMbdel

public ChronoUnitDatelineMddel () {
addResol uti on(new ChronoUni t Resol uti on(M LLI S,
1, TOP, ONLY));
addResol uti on(new ChronoUni t Resol uti on(M LLI'S,
1, TOP, ON\LY));
addResol uti on(new ChronoUni t Resol uti on(M LLI S,
1, TOP, ONLY));
addResol uti on(new ChronoUni t Resol uti on(M LLI S,
1, TOP, O\LY));
addResol uti on(new ChronoUni t Resol uti on(M LLI'S,

HH: mm ss: SSS",

HH: nm ss: SSS',

HH: mm ss: SSS",

TOP)) ;

addResol uti on(new ChronoUni t Resol uti on(M LLI S,
addResol uti on(new ChronoUni t Resol uti on(M LLI'S,
addResol uti on(new ChronoUni t Resol uti on(M LLI'S,
addResol uti on(new ChronoUni t Resol uti on(M LLI'S,
addResol uti on(new Chr onoUni t Resol ut i on(SECONDS,

HH: mm ss",

1, TOP, ONLY));

addResol uti on(new ChronoUni t Resol ut i on(SECONDS,

HH: mm ss”,

1, TOP, ONLY));

addResol uti on(new Chr onoUni t Resol ut i on(SECONDS,
1, TOP, ONLY));
addResol uti on(new Chr onoUni t Resol ut i on(SECONDS,

TOP, ONLY));

addResol uti on(new Chr onoUni t Resol ut i on(SECONDS,

TOP)) ;

addResol uti on(new Chr onoUni t Resol ut i on(SECONDS,

nodel . dat el i ne. Resol uti on. Posi ti on. BOTTOM
nodel . dat el i ne. Resol uti on. Posi ti on. M DDLE;
nodel . dat el i ne. Resol uti on. Position. ONLY;
nodel . dat el i ne. Resol uti on. Posi ti on. TOP,

. ChronoUni t . CENTURI ES;

. Chr onoUni t . DAYS;
. Chr onoUni t . DECADES;

. ChronoUni t . HOURS;

. ChronoUni t. M CRCS;

. ChronoUni t. M LLENNI A;
. ChronoUnit.M LLI
. ChronoUni t . M NUTES;
. ChronoUni t . MONTHS;

. Chr onoUni t . SECONDS;
. Chr onoUni t . VEEKS;

. ChronoUni t. YEARS;

S,

ext ends

"EEEE, dd. MVMM YYYY,
"EEEE, dd. MM YY,
"E, dd. MM YY,
"dd. MM YY, HH nmm ss: SSS*,
"dd. MM HH: nm ss: SSS*, 1,
"SSs', 1, BOTTOM);
"SSs', 5, BOTTOM);
"SSs', 10, BOTTOM));
"SSs', 15, BOTTOM);
"EEEE, dd. MVWMM YYYY,
"EEEE, dd. MM YY,
"E, dd. MM YY, HH mm ss",
"dd. M YY, HH mmss", 1,

"dd. MM HH mm ss", 1,

"HH: nm ss", 1, MDDLE));

addResol uti
addResol ut i
addResol uti
addResol uti
addResol uti
HH: ',
addResol uti

on(new ChronoUni t Resol uti
on(new ChronoUni t Resol uti
on(new ChronoUni t Resol uti
on(new ChronoUni t Resol uti
on(new ChronoUni t Resol uti

1, TOP, ONLY));

on(new ChronoUni t Resol uti

1, TOP, O\LY));

addResol uti
TOP, ONLY));
addResol ut i
TOP, ONLY));
addResol uti
addResol uti
addResol ut i
addResol uti
addResol uti
addResol uti
addResol uti
HH: nmd',
addResol uti
TOP));
addResol uti
TOP, BOTTOM
addResol ut i
TOP, ONLY));
addResol uti
O\LY)) ;
addResol ut i
O\LY));
addResol uti
BOTTOM) ;
addResol uti
BOTTOM) ;
addResol uti
BOTTOM) ;
addResol uti
ONLY)) ;
addResol uti
ONLY)) ;
addResol uti
O\LY)) ;
addResol ut i
O\LY)) ;
addResol uti
O\LY));
addResol ut i
BOTTOM) ;
addResol uti
addResol uti
BOTTOM) ;
addResol ut i
addResol uti

on(new ChronoUni t Resol uti
on(new ChronoUni t Resol uti

on(new ChronoUni t Resol uti
on(new ChronoUni t Resol uti
on(new ChronoUni t Resol uti
on(new ChronoUni t Resol uti
on(new ChronoUni t Resol uti
on(new ChronoUni t Resol uti
on(new ChronoUni t Resol uti

1, TOP, ON\LY));

on(new ChronoUni t Resol uti
on(new ChronoUni t Resol uti
ONLY)) ;

on(new ChronoUni t Resol uti
on(new ChronoUni t Resol uti
on(new ChronoUni t Resol uti
on(new ChronoUni t Resol uti
on(new ChronoUni t Resol uti
on(new ChronoUni t Resol uti
on(new ChronoUni t Resol uti
on(new ChronoUni t Resol uti
on(new ChronoUni t Resol uti
on(new ChronoUni t Resol uti
on(new ChronoUni t Resol uti

on(new ChronoUni t Resol uti

on(new ChronoUni t Resol uti
on(new ChronoUni t Resol uti

on(new ChronoUni t Resol uti
on(new ChronoUni t Resol uti

on(SECONDS, "ss", 1, BOTTOM);

on(SECONDS, "ss", 5, BOTTOM));

on(SECONDS, "ss", 10, BOTTOM);

on(SECONDS, "ss", 15, BOTTOM);

on(M NUTES, "EEEE, dd. MVWM YYYY,
on(M NUTES, "EEEE, dd. WYY, HH mfi,
on(M NUTES, "E, dd. WYY, HH mi, 1,
on(M NUTES, "dd. MM YY, HH mi{, 1
on(M NUTES, "dd. MM HH. i, 1, TOP));
on(M NUTES, "HH: mi', 1, MDDLE));
on(M NUTES, "mmi', 1, BOTTOM);

on(M NUTES, "mmi', 5, BOTTOM);

on(M NUTES, "mmi, 10, BOTTOM);

on(M NUTES, "mmi, 15, BOTTOM));

on(HOURS, "EEEE, dd. MVW YYYY,

on(HOURS, "EEEE, dd. MVWM YYYY", 1,
on(HOURS, "EEEE, dd. W YY, HH. mi, 1,
on(HOURS, "E, dd. MM YY, HH mi, 1,
on(HOURS, "dd. W YY, HH mi, 1, TOP,
on(HOURS, "dd. MM HH. nmi', 1, TOP
on(HOURS, "H.mi, 1, M DDLE,
on(HOURS, "H mmi, 3, M DDLE

on(HOURS, "H: mt, 6, M DDLE

on(DAYS, "EEEE d. MVWM YYYY", 1, TOP
on(DAYS, "EEEE d. MMW YY", 1, TOP
on(DAYS, "E, d. MMWM YY", 1, TOP
on(DAYS, "E, d. MWw™m', 1, TOP
on(DAYS, "E, dd.MM YY", 1, TOP,

on(DAYS, "EEEE dd", 1, M DDLE
on(DAYS, "E dd", 1, M DDLE, BOTTOM);
on(DAYS, "dd.wms', 1, M DDLE,

on(DAYS, "dd", 1, BOTTOM);

on(VEEKS, "'W w, EEEE d. MMWM YY"

1, TOP, ONLY));

1|

TOP,

addResol uti on(new ChronoUni t Resol uti on(VEEKS, "'W w, d. MVMM YY", 1,
TOP, ONLY));

addResol uti on(new ChronoUni t Resol uti on(VEEKS, "'W w, d. MVwW', 1));

addResol uti on(new ChronoUni t Resol uti on(VWEEKS, "'W w, E, dd. MW YY",
TOP, ONLY));

addResol uti on(new ChronoUni t Resol uti on(WEEKS, "'W w, dd. M YY", 1,
ONLY)) ;

addResol uti on(new ChronoUni t Resol uti on(\VEEKS, "'W w, dd. W', 1,
BOTTOM) ;

addResol uti on(new ChronoUni t Resol uti on(\WEEKS, "'W w', 1, M DDLE,
BOTTOM) ;

addResol uti on(new ChronoUni t Resol uti on(MONTHS, "MVWWM YYYY", 1, TOP,
ONLY))

addResol uti on(new ChronoUni t Resol uti on(MONTHS, "MVWM', 1, M DDLE,
BOTTOM) ;

addResol uti on(new ChronoUni t Resol uti on(MONTHS, "MwW', 1, M DDLE,
BOTTOM) ;

addResol uti on(new ChronoUni t Resol uti on(MONTHS, "M', 1, M DDLE, BOTTOM);

addResol uti on(new ChronoUni t Resol uti on(YEARS, "YYYY', 1));

addResol uti on(new ChronoUni t Resol uti on(DECADES, "YYYY", 1));

addResol uti on(new ChronoUni t Resol uti on(CENTURI ES, "YYYY", 1));

addResol uti on(new ChronoUni t Resol uti on(M LLENNI A, "YYYY", 1));

}

@verride
public final
switch (unit) {
case NANGCS:

return M CRCS;
case M CRCs:

return MLLIS;
case MLLIS:

ret urn SECONDS;
case SECONDS:

return M NUTES;
case M NUTES:

ret urn HOURS,
case HOURS:

return DAYS,
case DAYS:

ret urn VEEKS;
case WEEKS:

return MONTHS;
case MONTHS:

return YEARS,
case YEARS:

r et urn DECADES;
case DECADES:

return CENTURI ES;
case CENTURI ES:

return M LLENNI A;
def aul t:

Chr onoUni t

next Tenporal Unit (ChronoUnit unit) {

/*

* W are ignoring HALF DAYS.
*/

return null;

Simple Unit Dateline Model

The SimpleUnitDatelineModel class is a specialization for the SimpleUnit temporal which ships with FlexGanttFX. It requires scale resolutions
of type SimpleUnitResolution. The implementation of this model class below shows why the unit is called "simple".

...

SimpleUnitDatelineModel

/**

* Copyright (C) 2014 Dirk Lemmernmann Software & Consulting (dl sc.com
*

* This file is part of FlexGanttFX

*/

package com fl exganttfx. nodel . datel i ne;

i mport com fl exganttfx.nodel.util.SinpleUnit;

public final class SinpleUnitDatelineMdel extends
Dat el i neMbdel <Si npl eUni t> {

public SinpleUnitDatelineMdel () {
for (SinpleUnit unit : SinpleUnit.values()) {
addResol uti on(new Si mpl eUni t Resol ution(unit, "", 1));
}
}
@verride
public SinpleUnit nextTenporal Unit(SinpleUnit unit) {
int ordinal = unit.ordinal();
if (ordinal < SinpleUnit.values().length - 1) {
return SinpleUnit.values()[ordinal + 1];

}

return null;

...

Timezones

The dateline model manages a list of zone IDs, which is used by the Ul to create menu items for each ID. This way the user can easily toggle
between them. The default list is set up in the DatelineModel class like this:

...

DatelineModel

/**

* Constructs a new nodel and popul ates the list of available zone |Ds.
*/

protected DatelineMdel () {
addZonel d(" Eur ope/ Berlin");
addZonel d(" Ameri ca/ New_Yor k") ;
addZonel d(" Austral i a/ Darwi n");
addZonel d(" Austral i a/ Sydney") ;
addZonel d(" Ameri ca/ Argenti na/ Buenos_Aires");
addZonel d("Africal/ Cairo");
addZonel d(" Ameri ca/ Anchor age") ;
addZonel d(" Ameri ca/ Sao_Paul 0") ;
addZonel d(" Asi a/ Dhaka") ;

addZonel d("Africal/Harare");
addZonel d(" Ameri ca/ St _Johns");
addZonel d(" Ameri ca/ Chi cago");
addZonel d(" Asi a/ Shanghai ") ;
addZonel d(" Af ri ca/ Addi s_Ababa")
addZonel d(" Eur ope/ Pari s");
addZonel d(" Ameri ca/ | ndi ana/ | ndi anapol i s");
addZonel d(" Asi a/ Kol kat a") ;
addZonel d(" Asi a/ Tokyo") ;
addZonel d(" Paci fic/ Api a");
addZonel d(" Asi a/ Yerevan");
addZonel d(" Paci fi c/ Auckl and") ;
addZonel d(" Asi a/ Karachi ") ;
addZonel d(" Ameri ca/ Phoeni x") ;
addZonel d(" Aneri ca/ Puerto_Ri co");
addZonel d(" Aneri ca/ Los_Angel es");
addZonel d(" Paci fi c/ Guadal canal ") ;
addZonel d(" Asi a/ Ho_Chi _M nh");

Please note that the currently used timezone is managed by the Dateline control, not the model.

3.8 Eventline

Introduction

Date & Time Formatting
Cursor: Location & Time
Marked Time Interval

Introduction

The eventline is a control that displays time cursors: time at mouse location, selected time interval. This control is part of the Timeline and
displayed at the bottom of it.

W17, Monday 21. April 14 W 18, Monday 28. April 14 W 19, Monday 5. May 14
2 22 23 24 25 26 27 28 29 30 O 02 03 04 O5 O6 OF O8 09 10 11

Apr 27, 2014 6:37:07 AM

Date & Time Formatting

Each application has its own requirements regarding the format in which dates and times are displayed. Accordingly the eventline features a date
and time formatter that can be replaced by calling setDateTimeFormatter(). Formatter instances can be looked up by calling static methods on
the DateTimeFormatter class, e.g. DateTimeFormatter.ISO_LOCAL_DATE_TIME.

Cursor: Location & Time

The eventline keeps track of the mouse cursor location when the mouse hovers over the timeline or the graphics control. The location is stored in
the read-only cursorLocationProperty(). Whenever the location changes the eventline will also update the value of cursorTimeProperty().
These two properties make the eventline the perfect provider for cursor information for the entire application.

Marked Time Interval

Whenever the user edits an activity the eventline will display the new time interval occupied by the activity. This interval is stored in the markedTi
melntervalProperty(). When its' value changes the eventline will display two additional time cursors, one for the beginning of the time interval
and one for its' end.

4. Model

The following table lists the most important model classes for populating a Gantt chart with data.

Class Desription

Activity Activities represent objects that will be displayed below the timeline in the graphics view of the Gantt chart control.
Activities can be added to a specific layer on a row.

ActivityRef An activity reference is used to precisely identify the location of an activity where the location is a combination of row, layer,
and the activity itself.

ActivityLink An activity link can be used to express a dependency between two activities.

ActivityRepository =~ Activity repositories are used by rows to store and lookup activities.

Row A (model) row object is used to store the activities found on a (visual) row of the Gantt chart.

Layer Layers are used to create groups of activities.

LinesManager A lines manager is used to control the layout of (inner) lines inside a row.

Layout Each row and each inner line of a row are associated with a layout. The layout influences several aspects during rendering

and editing of activities. Additionally several of the system layers used for drawing the row background also utilize the
layout information.

Calendar A calendar is an extension of an activity repository with the addition of a name and a visibility property.

4.1 Activity

® |ntroduction
® Activity Types

Introduction

Activities represent objects that will be displayed below the timeline in the graphics view of the Gantt chart control. Activities can be added to a
specific layer on a row by calling Row.addActivity(Layer, Activity).

Activity Types

The following table lists all available activity types.

Only mutable activity types can be edited interactively by the user. Any activity type that is not mutable can only be used for read-only

purposes.

Activity Interface

Activity

Chart Activity

Conpl et abl eActivity

Hi ghLowChart Activity

Mit abl eActivity

Mit abl eChart Activity

Mut abl eConpl et abl eActivity

Base Implementation

Acti vi t yBaseBase

ChartActi vi t yBaseBase

Conpl et abl eActi vi t yBase

Hi ghLowChart Acti vi t yBase

Mt abl eActi vi t yBase

Mit abl eChart Acti vi t yBase

Mut abl eConpl et abl eActi vi t yBase

Mut abl eHi ghLowChart Activity Mitabl eH ghLowChartActivityBase

Description & Attributes
The simplest form of an activity.

id (String)

name (String)
startTime (Instant)
endTime (Instant)

These activities can be displayed in a chart layout.

id (String)

name (String)
startTime (Instant)
endTime (Instant)
chartValue (double)

These activities carry a percentage value (completion).

id (String)

name (String)

startTime (Instant)

endTime (Instant)
percentageComplete (double)

These activities can be displayed in a chart layout.

id (String)

name (String)
startTime (Instant)
endTime (Instant)
high (double)

low (double)

The simplest form of a mutable activity. The user can change
the start and end time of these activities.

id (String)

name (String)
startTime (Instant)
endTime (Instant)

These activities can be displayed in a chart layout. The user
can change the start and end time and the chart value of these
activities.

id (String)

name (String)
startTime (Instant)
endTime (Instant)
chartValue (double)

These activities carry a percentage value (completion). The
user can change the start and end time and the percentage
complete value of these activities.

id (String)

name (String)

startTime (Instant)

endTime (Instant)
percentageComplete (double)

These activities can be displayed in a chart layout. The user
can change the start and end time and the high and low value
of these activities.

id (String)

name (String)
startTime (Instant)
endTime (Instant)
high (double)

low (double)

Editable

4.1.1 ChartActivity

A chart activity is an add-on interface for activities. It needs to be implemented by activities that want to participate in a ChartLayout. The interface
adds a chart value to the activity. The image below shows an example of a chart layout laying out one chart activity per day.

4.1.2 CompletableActivity

A completable activity is an activity that carries a "percentage complete" value between 0 and 100%. Completable activities are drawn with a "com
pletable activity bar renderer". This renderer fills the background of the activity based on the percentage complete value. The image below shows
an example.

 m— | Initialisation
4.1.3 HighLowChartActivity

A high low chart activity carries two extra attributes: high and low. These values are used by the ChartLayout to position them appropriately. One
example for a good use case for high low activities are candlestick charts (e.g. stocks open / high / low / close price).

4.2 ActivityRef

An activity reference is used to precisely identify the "location" of an activity. A location is the combination of row, layer, and the activity itself. As
the same activity can be located on multiple rows and or multiple layers at the same time it is often necessary to work with an activity reference
instead of only the activity.

4.3 ActivityLink

An activity link can be used to model any kind of dependency between two activities. In project planning applications a link would express a
predecessor / successor relationship between two tasks, for example "task A must be finished before task B can begin". In other domains a link
might simply express that two or more activities need to be scheduled together and that moving one of them requires all others to be moved, too.
The image below shows an example of such a link.

(— B “etup Configuration Management for Documentation

| | Zetup Change Managemeant

A link can be added to the Gantt chart by calling GanttChart.getLinks().add(myLink);

4.4 ActivityRepository

Introduction

Queries

Earliest / Latest Time Used
Updating Activities

Event Handling

Introduction

Activity repositories are used by rows to store and lookup activities. Each row by default owns an IntervalTreeActivityRepository. This default
repository can be replaced with a custom one, for example if your application requires a lazy loading strategy.

Queries

The most important functionality of any repository is the ability to query the repository for activities within a given time interval. For this purpose
the ActivityRepository interface defines the getActivities() method with these parameters:

Parameter Description

Layer |ayer Whenever the user scrolls left or right the row will query the repository several times. Once for each layer.

I nst ant The start time of the time interval for which the row is querying activities.
start Ti me

I nst ant The end time of the time interval for which the row is querying activities.
endTi me

Tenporal Unit The current value of the primary temporal unit currently displayed by the dateline. This is the unit shown at the bottom of
uni t the dateline, e.g. days. This parameter can be used to control how fine-grained the result will be. If we know that the user is
currently looking at months then it might make sense to aggregate daily activities.

Zonel d The timezone shown by the row.
zonel d

Earliest / Latest Time Used

Each repository implementation needs to be able to answer the question for the earliest and latest times used (earliest start time / latest end time
of any activity stored in the repository). This allows the Ul to provide controls for easy navigation: "show earliest", "show latest". For this purpose
repositories need to implement the getEarliestTimeUsed() and getLatestTimeUsed() methods.

Updating Activities

Activities need to be removed (ActivityRef.detachFromRow()) from their repository before they are being changed and added

back (ActivityRef.attachToRow()) after they have been changed. This is the only way to ensure that a repository will always have its underlying
data structure in synch with the activities. Example: the interval tree data structure only works properly if all its nodes are in their correct location.
This can only be guaranteed if the nodes are removed from the tree before they are being changed (otherwise the tree will not find them) and then
reinserted with their new value.

Event Handling

Activitiy repositories implement listener support so that the Ul can update itself if the content of the repository changes. Interested parties can
attach handlers by calling addEventHandler() or remove handlers by calling removeEventHandler(). The event class is called RepositoryEvent
and it has three event types:

Event Type Description

ACTI VI TY_ADDED An activity was added to the repository.
ACTI VI TY_REMOVED An activity was removed from the repository.

REPOSI TORY_CHANGED = Something has changed the state of the repository.

Each one of these event types will normally trigger a redraw of the row to which the repository belongs.

4.4.1 IntervalTreeActivityRepository

The InteralTreeActivityRepository is an activity repository that is using one or more binary interval tree data structures for storing activities.

http://en.wikipedia.org/wiki/Interval_tree

16 17 18 19 20 21 22 23 24 25

This repository type is the default repository type. It is also the preferred repository for rows with a large number of intervals (hundreds).

4.4.2 ListActivityRepository

The ListActivityRepository is an activity repository using one or more list data structures to store activities. This repository can be configured to
return different types of result iterators from its query method. The possible values are defined in ListActivityRepository.lteratorType.

Type Description

Bl NARY_I TERATOR Returns an iterator that performs a binary search to find the first activity to draw for a given time interval. It will then
iterate over all following activities until it finds an activity that starts after the given time interval.

LI NEAR_|I TERATOR Returns an iterator that performs a linear search to find the first activity to draw for a given time interval. It will then
iterate over all following activities until it finds an activity that starts after the given time interval.

SI MPLE_| TERATOR = Returns an iterator that does not perform any search at all but will start returning activities immediately, no matter
whether they are currently located in the visible time interval of the Gantt chart or not. This iterator is used for rows with

only a few activities on them.

This iterator is very useful when we want to make sure that the trailing text of an activity will still be shown
even if the activity has already scrolled out of the visible area.

[Create Project

D Setup Cﬂnfigu guration Management for Documentation

[7 Setup Change I | Setup Changs Management
¥ [O] System Design

Code Delivery

4.5 Row

® |ntroduction
® Type Arguments & Hierarchy
® Properties

Introduction
A row object is used to store the activities found on a row of the Gantt chart. These activities are not stored directly on the row but in an activity

repository. The default repository is of type IntervalTreeActivityRepository. Activities can be placed on lines within the row. The row delegates this
work to a LinesManager. The default manager is of type EqualLinesManager.

Type Arguments & Hierarchy

Three type arguments are needed to define a row. The first one defines the type of the parent row, the second one defines the type of the children
rows, the third one defines the type of the activities shown on the row. The following is an example that defines a "building", that is part of a
factory. The building has machines in it. In the building row we are showing shifts.

Building.java

public class Building extends Row<Factory, Machine, Shift> {

A model like this would allow us to display a hierarchy in the Gant chart that might look like this:

® Factory
® Building 1
® Building 2
® Building 3
® Machine A
® Machine B
® Machine B
® Building 4
® Machine C
® Machine D
Properties

Each row has a set of properties.

Property Description

Bool eanProperty expanded Controls whether the row will show its children rows or not.

Doubl eProperty hei ght The current height of the row.

Doubl eProperty m nHei ght The minimum height of the row.

Doubl eProperty maxHei ght The maximum height of the row.

bj ect Property<Layout > | ayout The layout used by the row. The default is Gantt Layout.

I nt eger Property |ineCount The number of inner lines to show within the row.

Obj ect Property<Li nesManager <A>> The lines manager used for controlling the lines, their location, their height, the placement of
| i nesManager the activities.

StringProperty nane The name of the row, e.g. "Machine 1", "Building 1".

ReadOnl yObj ect Propert y<P> par ent The parent row.

This is a read-only property that is managed internally and updated when a row gets
added to the list of children of another row.

Qbj ect Property<ActivityRepository> The repository used by the row to store the activities.
repository

Bool eanProperty showi ng A flag used to signal that the row is currently shown in the Ul. This information can be used for
optimizing lazy loading strategies.

http://flexganttfx.com/apidocs/com/flexganttfx/model/Row.html

bj ect Property<bj ect > user Obj ect An optional user object. Used to have a bridge to the business model.

bj ect Property<Zonel d> zonel d The timezone represented by the row. Each row can be in its own timezone.

4.6 Layer

Layers are used to group activities together. Activities on the same layer are drawn at the same time (z-order). A layer has a name, an ID, it can
be turned on / off, and their opacity can be changed. These changes have an impact on all activities on that layer. The ID of the layer is used for
drag and drop operations of activities between different Gantt charts. Dropped activities will be added to the layer with the same ID. The layer
name will be used as the default ID for newly created layers. The ID only needs to be changed if the same layer type will be used with different

names in different Gantt charts.

4.7 LinesManager

Introduction

Line Count

Interface

Equal Lines Manager
Auto Lines Manager

Introduction
A lines manager is used to control the layout of lines inside a row. Activities located on different lines do not overlap each other, except if the lines

themselves overlap each other. Each line can have its own height and a location within the row. Each line can also have its own Layout . By using
lines and layoults it is possible to display activities that belong to the same row in different ways (see ChartLayout, AgendalLayout, GanttLayout).

Line Count
The actual number of lines on a row is stored on the lineCount property of the row. Simply call Row.setLineCount(int) to change its value. If the

line count is larger than O the row will call back on a its line manager to figure out where each line is located, how high it is, and which activity will
be placed on which row. Also the type of layout to use for each line will be retrieved from the manager.

Interface
The following table describes the interface methods.

Method Description

doubl e get Li neHei ght (int |inelndex, Returns the height of the line with the given index. The height can be computed on-the-fly
doubl e rowHei ght); based on the given available row height.

Returns the line index for the given activity. This method places activities on different
lines.

int getLinelndex(A activity);

Layout getLi neLayout (int |inelndex); Returns the layout for the line with the given line index. Each line can have its own layout.

doubl e getLineLocation(int |inelndex, Returns the location of the line with the given index. The location can be computed
doubl e rowHei ght); on-the-fly based on the given available row height.

Equal Lines Manager
The EqualLinesManager can be used to equally distribute line locations and line heights on a row. Each line will have the same height and the

lines will not overlap each other. While this behaviour will be provided by the manager it is still the responsibility of the application to place the
activities on different rows and to specify the layout for each line. This is also the reason why the methods getLineHeight() and getLineLocation

() are final while the methods getLineLayout() and getLinelndex() are not and can be overriden.

Auto Lines Manager

The AutoLinesManager can be used to create a dynamic number of lines based on all activities inside a repository. This lines manager detects

clusters of intersecting activities (start / end time intervals) and ensures that enough lines are available to place the activities in a non-overlapping
way. Below you are finding the complete source code of this manager class as a case study. Please note that the manager's layout() method
needs to be invoked from the outside. A good way to do this is to listen to ACTIVITY_CHANGE_FINISHED events or even more fine grained STA
RT/END_TIME_CHANGE_FINISHED events.

AutoLinesManager
/**
* Copyright (C) 2014 Dirk Lemmernmann Software & Consulting (dl sc.com
*
* This file is part of FlexGanttFX
*/
package com fl exganttfx.view util;
inmport static java.util.Cbjects.requireNonNull;
i mport inpl.comflexganttfx.skin.util.Placement;
i mport inpl.comflexganttfx.skin.util.Resolver;
import java.tinme.lnstant;
i mport java.util.ArrayList;
import java.util.lterator;
i mport java.util.List;
i mport java.util. Mp;
i mport com fl exganttfx.nodel.Activity;
i mport com fl exganttfx. nodel . ActivityRepository;
i mport com fl exganttfx. nodel . Layer;
i mport com fl exganttfx. nodel . Li nesManager ;
i mport com fl exganttfx. nodel . Row,
i mport com fl exganttfx. nodel .| ayout. Equal Li nesManager ;
i mport com fl exganttfx. view. graphi cs. G aphi csBase,;
/**
* A specialized {@ink LinesManager} used for ensuring that activities
will not
* overlap each other. This manager will create as many inner lines as
needed
* and will calculate the placenent of all activities on these |ines.

* @aram <R>

* the type of the row that will be managed
* @ar am <A>
* the type of the activities that will be nmanaged

* @ince 1.2
*/
public class AutoLi nesManager <R extends Row<?, ?, A>, A extends Activity>
ext ends Equal Li nesManager <R, A> {
private Map<A, Placenent<A>> pl acenents;
private G aphi csBase<R> graphi cs;
/**
* Constructs a new automatic |ines nmanager. The constructor requires a
* reference to the graphics view to | ookup various paraneters that are
* needed when the manager queries the activity repository of the row
(e.qg.
* the currently displayed tenporal unit and the list of |ayers).

*

* @aramrow

* t he managed row
* @aram graphics
* the graphics view where the nmanager will be used

* @ince 1.2
*/
publ i c AutoLi nesManager (R row, Graphi csBase<R> graphics) {
super (row) ;
this. graphics = requireNonNul | (graphics);
| ayout () ;
}
/**
* Returns the graphics view where the manager wll be used.
* @eturn the graphics view
* @ince 1.2
*/
public final Gaphi csBase<R> get G aphics() {
return graphics;
}
public final void layout() {
R row = get Row();
Acti vityRepository<A> repository = row. get Repository();
Instant st = repository.getEarliestTi neUsed():;
Instant et = repository.getlLatestTi neUsed();
if (st ==null || et == null) {
return,
}
Li st<A> al |l Activities = new ArrayList<>();
for (Layer layer : graphics.getlLayers()) {
Iterator<A> activities = repository.getActivities(layer, st, et,
graphi cs.getTineline().getDateline()
.getPrimaryTenporal Unit(), row getZoneld());
if (activities !'=null) {
activities.forEachRenaining(activity -> allActivities
.add(activity));
}
}

pl acements = Resol ver.resolve(allActivities);

if (placenents !'= null && !placenents.isEmpty()) {
Pl acenent <A> p = placenments.values().iterator().next();
r ow. set Li neCount (p. get Col umCount ()) ;

} else {

row. set Li neCount (0) ;

}
}
@verride
public int getLinelndex(A activity) {

if (placements !'= null) {

Pl acenent <A> pl acenent = pl acenents. get(activity);

if (placenent !'= null) {

return pl acenent. get Col uml ndex();

}

return -1;
. |
)

4.8 Layout

® Introduction
® Layout Types
® Padding

Introduction

Each row and each inner line of a row are associated with a layout. The layout influences several aspects during rendering and editing of
activities. Additionally several of the system layers used to draw the row background also utilize the layout information. The layout can be set by
calling Row.setLayout(Layout) or when using inner lines by returning them via the lines manager of the row.

Layout Types
Three layout types are included in FlexGanttFX.

Layout Description

Gant t Layout Lays out activities horizontally along the timeline. Positions are based on the start and end times of the activities.

Agendalayout Lays out activities vertically along a "local time" scale (0 - 24 hours). This makes activities look like calendar entries.

Chart Layout Lays out activities as chart values. Activities can implement the ChartActivity or the HighLowChartActivity interface.

Padding

All layout types have a padding property. It is used to create a visual gap at the top and bottom of each row / line.

Padding Area

Padding Area

4.8.1 Gantt Layout

 S— Initialisation
ather Requirements

Zi’iignnff Requirements | Scope freeze

| Create Project Charter

laetup Configuration Management for Documentation

Setup Charge Management

| System Design
«I» Code Delivery by iCrafx

cumentation Delivery by iGrafx

_]jmalyse Code according to JAP standards and iGrafx documentation

4.8.2 Agenda Layout

® |ntroduction
® Start and End Time
® Conflict Strategy

Introduction

The agenda layout class is used to lay out activities in a style similar to a regular calendar where a vertical scale will display hours. Activities are
used to represent appointments for a given day.

Activities shown in agenda layout might be rendered several times. This is, for example, the case when an activity spans several days.

11.04.2014 07:00

11.04.2014 15:00

18:00 13.04.2014 17:.00

11.04.2014 1%:00

.E] 21:00 |

Start and End Time

The agenda layout class allows you to specify a start and end time. This is used to restrict the time interval that is shown and in which the agenda
activities are laid out. In most cases it does not make sense to show the entire 24 hours but only the working hours, e.g. 8am until 6pm. Simply

call AgendalLayout.setStartTime() or setEndTime() to change the time range.

Conflict Strategy
Activities in an agenda layout might intersect with each other. The conflictStrategy property allows you how to handle these situations. The

following table lists the possible values.

Strategy Description

OVERLAPPI NG = Conflicting agenda entries will be drawn on top of each other but with one of them being indented by a couple of pixels.

The indentation amount can be controlled via the overlapOffset property on AgendalLayout.

PARALLEL Conflicting agenda entries will be displayed in different columns within the same day.

4.8.3 Chart Layout

Introduction

Using the ChartLayout class results in activities being laid out as chart bars. A series of such bars can for example be used to form a capacity
profile. Activities of type ChartActivity will be placed on a zeroline between the minimum and the maximum value of the layout. The height of the
chart activity will be based on the value returned by ChartActivity.getChartValue(). Activities of type HighLowChartActivity will appear as floating
bars. The layout also supports the definition of minor and major chart lines drawn in the row background.

Min & Max Value

The chart layout provides two properties that control the actual layout of the chart activities: minValue and maxValue. These values have to be
managed by the application, not the framework. They can be set by calling ChartLayout.setMinValue() or ChartLayout.setMaxValue().

Major & Minor Ticks

A list of major and minor ticks is available on each chart layout instance. Values can be added to these lists in order to render value lines in the
background of the row. Example: the min value is equal to 0 the max value is equal to 100. Then it would make sense to define major ticks for the
values 50 and 100. Minor ticks might be at 10, 20, 30, 40, 60, 70, 80 and 90.

4.9 Calendar

® |ntroduction
®* Weekend Calendar

Introduction

A calendar is an extension of an activity repository with the addition of a name and a visibility property. Calendars can be added to the whole Ga
ntt chart or to individual rows within the Gantt chart. Calendars are used for the background of rows. They can mark things like weekend days or
holidays. Calendar information is always shown as read-only. Activities returned by calendars have to be of type CalendarActivity. They can not
be edited interactively by the user.

Weekend Calendar

There already is a predefined calendar type included in FlexGanttFX. It is called WeekendCalendar and it is used to mark the weekend days
(e.g. Saturday, Sunday).

Week
end

The following listing shows the entire code of this calendar class. It can be used as a basis for your own calendars.

WeekendCalendar.java

/**
* Copyright (C) 2014 Dirk Lemmernmann Software & Consulting (dl sc.com
* This file is part of FlexGanttFX
*/

package com fl exganttfx. nodel . cal endar;

import static java.tine.tenporal.ChronoUnit. DAYS;

import static java.util.Cbjects.requireNonNull;

i mport java.tine. DayOr Wek;

i mport java.tinme.lnstant;

i mport java.time. Zonel d;

i mport java.time. ZonedDat eTi ne;

i mport java.time.tenporal.ChronoUnit;

i mport java.time.tenporal. Tenporal Unit;
i mport java.util.ArraylList;

import java.util.Arrays;

i mport java.util.Collections;

i mport java.util.Enuntet;

import java.util.lterator;

i mport java.util.List;

i mport j avaf x. event. Event;

i mport com fl exganttfx. nodel . Layer
i mport com fl exganttfx. nodel.repository. RepositoryEvent;
/**

* A cal endar specialized on returning activities that represent weekend
days

* (default: saturday, sunday). The days that are consi dered weekend days
can be

* configured by calling {@ink #set WekendDays(DayOf Week. ..)}.

*

* @ince 1.0

*/
public class WekendCal endar extends Cal endar Base<WekendCal endar Acti vity>
{

private Instant lastStartTime = Instant. MN;

private Instant |astEndTi me = I nstant. MAX;

private Zoneld | ast Zonel d;

private List<WekendCal endarActivity> entries;

privat e Enuntet <DayOf Week> weekendDays = Enuntet . of (DayOf Week. SATURDAY,
Day Of Week. SUNDAY) ;

/**

* Constructs a new weekend cal endar.
*

* @ince 1.0

*/

publ i c WeekendCal endar () {

super ("Weekends") ;

}

/**
* Sets the days of the week that are considered to be a weekend day. By
* default {@ink DayOf Week#SATURDAY} and { @i nk DayCOf Week#SUNDAY} are
* consi dered weekend days.

* @aram days
* the days of the week that are to be consi dered weekend days
* @ince 1.0
*/
public void set WekendDays(DayOf Week. .. days) {
requi r eNonNul | (days) ;
weekendDays. cl ear () ;
weekendDays. addAl | (Arrays. asLi st (days));
Event.fireEvent(this, new RepositoryEvent(this));

* Returns the days of the week that are to be considered weekend days.

* default {@ink DayOf Week#SATURDAY} and { @i nk DayCOf Week#SUNDAY} are
* consi dered weekend days.

* @eturn the days of the week used as weekend days

* @ince 1.0

*/

public DayOf Week[] get WekendDays() {

return weekendDays. t oArray(new DayOf Week[weekendDays. si ze()]);
}

@verride

public Iterator<WekendCal endar Activity> getActivities(Layer |ayer,

Instant startTine, |Instant endTinme, Tenporal Unit tenporal Unit,
Zonel d zoneld) {

if (!'(tenporal Unit instanceof ChronoUnit)) {

/*

* W only work for ChronoUnit.

*/

return Coll ections.enptyListlterator();

}

if (startTinme.equal s(lastStartTinme) && endTi me. equal s(I ast EndTi ne)
&& zonel d. equal s(I ast Zonel d)) {

/*
* W already answered this query for the given tine interval. Let's
* return the result fromlast tine.

*/
if (entries !'=null) {
return entries.iterator();
}
} else {
ChronoUnit unit = (ChronoUnit) tenporal Unit;
/*

* The time interval has changed. Find the weekends within the new
* interval, but only if the user is currently |ooking at days or
* weeks.

*/

f (isSupportedUnit(unit)) {

/* Lazily create list structure. */

if (entries == null) {

entries = new ArraylLi st <WeekendCal endar Acti vity>();
} else {

entries.clear();
}

ZonedDat eTi me st = ZonedDat eTi ne. of I nstant (startTi ne, zoneld);
ZonedDat eTi ne et ZonedDat eTi ne. of | nst ant (endTi ne, zonel d);
fi ndWeekends(st, et);

lastStartTime = startTine;

| ast EndTi me = endTi ne;

| ast Zoneld = zonel d;

return entries.iterator();

By

}

}
return Collections.enptylListlterator();
}
/**
* Determines if weekends will be shown for the given tenporal unit.

* By default we only show weekends for {@ink ChronoUnit#DAYS} and
* {@ink ChronoUnit#WEEKS}. To support nore units sinply override
* this method in a subcl ass.

* @aram unit
* the unit to check
* @eturn true if weekend information will be shown in the Gantt chart
* @ince 1.0
*/
prot ect ed bool ean i sSupportedUnit(Tenporal Unit unit) {
if (unit instanceof ChronoUnit) {
ChronoUnit chronoUnit = (ChronoUnit) unit;
switch (chronoUnit) ({
case DAYS:
case WEEKS:
return true;
defaul t:
return fal se;

}
}
return fal se;
}
private void findWekends(ZonedDat eTi ne st, ZonedDateTine et) {
while (st.isBefore(et) || st.equals(et)) {
i f (weekendDays. cont ai ns(st.get DayOf Week())) {
st = st.truncat edTo(DAYS);
entries. add(new WeekendCal endar Acti vity(st. get DayOf Week()
.toString(), Instant.fron(st), Instant.fron(st
.plusDays(1)), st.getDayOfWek()));
}
st = st.plusDays(1);
}
}

5. Styling (CSS)

FlexGanttFX ships with several custom controls. Each one of them has its own stylesheet. The following table lists the controls and their
associated CSS stylesheets.

Control Stylesheet
GanttChart gantt.css

GraphicsBase graphics.css

Timeline timeline.css
Dateline dateline.css
Eventline eventline.css

For convenience the files have been attached to this page.

File Modified =

* @ gantt.css Oct 07, 2014 by Dirk -
Lemmermann [Administrator]

b @ graphics.css Oct 07, 2014 by Dirl'('
Lemmermann [Administrator]

Oct 07, 2014 by Dirk

* @dateline.css K
Lemmermann [Administrator]

Oct 07, 2014 by Dirk

b @eventline.css "
Lemmermann [Administrator]

Oct 07, 2014 by Dirk
Lemmermann [Administrator]

» @timeline.css
s Download All

dateline.css

...

/*
* dateline.css file of FlexGanttFX
*
* Copyright 2014 Dirk Lenmermann Software & Consulting
*/
.dateline {

- f x-background-col or: transparent;

}

.dat el i ne-content {

}

.dateline-cell {

https://flexgantt.atlassian.net/wiki/download/attachments/491824/gantt.css?api=v2
https://flexgantt.atlassian.net/wiki/download/attachments/491824/graphics.css?api=v2
https://flexgantt.atlassian.net/wiki/download/attachments/491824/dateline.css?api=v2
https://flexgantt.atlassian.net/wiki/download/attachments/491824/eventline.css?api=v2
https://flexgantt.atlassian.net/wiki/download/attachments/491824/timeline.css?api=v2
https://flexgantt.atlassian.net/wiki/download/all_attachments?pageId=491824

-fx-padding: 2 6 2 6;
- f x- background-col or: transparent;
-fx-border-col or:
derive(-fx-base, 80%
|inear-gradient(to bottom derive(-fx-base, 80% 20%
derive(-fx-base, -10% 90%
derive(-fx-base, 10%
linear-gradient(to bottom derive(-fx-base, 80% 20%
derive(-fx-base, -10% 90%,
/* Quter border: */
transparent -fx-box-border -fx-box-border transparent;
-fx-border-insets: 0110, 00 0O O;
-fx-border-w dth: 0.083333em 0.083333em 0. 083333em 0, 0.083333em
0. 083333em 0. 083333em

}

.dat el i ne-cell: hover {
- f x- background-col or: rgba(255.0, 255. 0, 255.0,1.0) ;
-fx-effect: innershadow three-pass-box , rgba(0.0,0.0,0.0,0.6) , 5.0,
0.0, 0.0, 1.0);
}

.dateline-cell:pressed {
- f x- backgr ound- col or: rgba(255.0, 255. 0, 255. 0, 0. 8)

}

.dateline-cell > .text {
-fx-alignnent: center;

}

.dateline-cell > .text:hover {

}

.dateline-cell-sinmpel > .text {
-fx-alignment: baseline-left;

}

.dateline-cell-selected {

-fx-border-color: transparent transparent transparent -fx-box-border, red
transparent transparent transparent;

-fx-border-width: 1.0, 3.0;

-fx-border-insets: 0, 0.0 0.0 0.0 1.0;

}

.calendar-info {
- f x- backgr ound-si ze: 8;
- f x- background-i mage: url ("cal endar. png");
- f x- background-position: right top
- f x- background-repeat: no-repeat;

}

.dateline-cell-last {

-fx-border-w dth: 0.083333em 0 0.083333em 0. 083333em 0.083333em 0
0. 083333em O;

}

.dateline-cell-first {
-fx-border-wi dt h: 0.083333em 0. 083333em 0. 083333em 0, 0.083333em 0
0. 083333em 0;

}

.scale {
- f x- background-col or: transparent;

/*
* Scal e height property is currently not supported. Tineline height and
* tree table header height is now hard-wi rd and based on font size.
*/

[* -fx-scal e-height: 26.0; */
-fx-cel | -paddi ng: 5;
}

.scal e-top,
.scale-mddle {

}

.scal e-bottom {

}

.scale-only {

}

.centuries {}
. days {}

. decades {}
.hal f _days {}
. hours {}
.nmonths {}
.mcros {}
.mllenia {}
.mllis {}
.mnutes {}

. hanos {}
.seconds {}

. weeks {}

.years {}

.scal e-bottom > .saturday, .scale-bottom> .sunday {
- f x- background-col or: rgba(0,0,0,0.1) ;
}

.scal e-bottom > . saturday: hover, .scale-bottom > .sunday: hover {
- f x- background-col or: rgba(0,0,0,0.1) ;
}

.january {}

.february {}
.march {}
Lapril {}
.may {}
.june {}
SJuly {}
.august {}

. septenber {}
.october {}
. novenber {}
. decenber {}

.am {

}

- pm {
- f x- background-col or: rgba(255. 0, 255. 0, 255.0,0. 2);
}

.zone-id-1abel {
- f x- backgr ound- col or:
| i near-gradi ent (#f f d65b, #e68400),
| i near-gradi ent (#ffef84, #f2bad44),
|'i near-gradient (#ffeaba, #efaa22),
I'i near-gradi ent (#ffe657 0.0% #f8c202 50.0% #eealOb 100. 0%,
linear-gradient(fromO0.0%0.0%to 15. 0% 50. 0%
rgba(255. 0, 255. 0, 255.0, 0. 9), rgba(255.0, 255.0,255.0,0.0));
-fx-background-radius: 0.0 0.0 0.0 0.0;
- f x- background-insets: 0.0,1.0,2.0,3.0,0.0;
-fx-text-fill: #654b00;
-fx-font-wei ght: bold;
-fx-padding: 6.0 10.0 6.0 10.0;

-fx-effect: dropshadow(gaussian, rgba(0.0,0.0,0.0,0.5), 3.0, 0.5, 1.0,
1.0) ;

}

eventline.css

/*

* eventline.css file of FlexGanttFX

*

* Copyright 2014 Dirk Lenmernmann Software & Consulting
*/

/*
* The eventline uses the same style as the dateline cells. This style
* is based on the default npdena style of the table colum headers.
*/
.eventline {
- f x- background-col or: transparent;
-fx-border-col or:
derive(-fx-base, 80%
|inear-gradient(to bottom derive(-fx-base, 80% 20%
derive(-fx-base, -10% 90%
derive(-fx-base, 10%
linear-gradient(to bottom derive(-fx-base,80% 20%
derive(-fx-base, -10% 90%,
/* Quter border: */
transparent -fx-box-border -fx-box-border transparent;
-fx-border-insets: 0110, 00 0 O;
-fx-border-w dth: 0.083333em O 0.083333em 0, 0.083333em 0 0.083333em 0
-fx- pref-height: 20px;
}

/*
* The style used for the |label that displays the tinme at the current
* mouse cursor |ocation
*/
.time-cursor {
-fx-font-size: 0.8em
-fx-text-fill: white;
-f x-background-col or: olivedrab
-fx- background-insets: 1 0 1 O;
- f x- background-radi us: 8;
-fx-border-col or: derive(olivedrab, -20%;
-fx-border-radius: 8px;
-fx-padding: 0 8 0 4;
}

/*
* The style used for the two |abels that display the start and end tine
* of the currently edited activity.

*/

.marked-tinme {
-fx-font-size: 0.8em

-fx-text-fill: white;

- f x- background-col or: cornfl ower bl ue;
-fx- background-insets: 1 0 1 O;

- f x- background-radi us: 8;
-fx-border-col or: derive(cornflowerblue, -20%
-fx-border-radius: 8;

-fx-padding: 0 8 0 8;

}

/*

* Additional style to nodify the appearance of the start tine only.
*/

.marked-tinme-start {

}

/*
* Additional style to nodify the appearance of the end tine only.

*/
. marked-tine-end {

}

gantt.css

/*

* gantt.css file of FlexGanttFX

*

* Copyright 2014 Dirk Lenmernmann Software & Consulting
*/

/* Define global colors */

.root {

-tree-tabl e-row background-even: white;
-tree-tabl e-row background- odd: rgb(245, 245, 245);

}

/*

* The split pane padding gets renoved so that the tree table and the
* graphics view both completely fill their sides.

*/

.split-pane {
- f x- paddi ng: 0. 0;
}

.scroll-bar {
-fx-opacity: .75;
}

/*
* Row header cells are used in the row header columm / the first colum
* of the tree table. The row header is used to display row nunbers. The
user
* can also resize rows via a nouse drag inside the cell

*/

. row header-cel |l {

-fx-text-fill: black;

- f x- background-col or: derive(-fx-box-border,30.0%, linear-gradient(to

right, derive(-fx-base,-3.0%, derive(-fx-base,5.0% 50.0%
derive(-fx-base,-3.0%);

-fx-border-col or: transparent -fx-box-border -fx-box-border
- f x- box- bor der ;

}

/*

* The tree tabl e header has to have the sane height as the tineline.
* The hei ght can depend on the |ocation of the Gantt chart if it is
* shown in a multi Gantt chart container

*/

.gantt-tree-tabl e-vi ew . col um- header,

.gantt-tree-tabl e-viewfirst .colum-header ({
-fx-pref-hei ght: 60px;

}

/*

* The tabl e header is smaller when the Gantt chart is placed in the
* middle or bottomof a nulti Gantt chart context.

*/

.gantt-tree-tabl e-vi ew-ni ddl e . col um- header,

.gantt-tree-tabl e-vi ew | ast .col um-header {

-fx-pref-height: 24px;

}

/*

* W do not need the vertical scrollbar of the table. W are styling it
* away by setting its preferred width to zero. But we only do this if the
* current display node is "standard" (table and graphics are both
visible).

*/

.tree-tabl e-vi ew st andar d- di spl ay-node > .virtual -fl ow >
.scroll-bar:vertical,

.tree-tabl e-vi ew st andar d- di spl ay-node > .virtual -fl ow >
.scroll-bar:vertical .decrenent-arrow,

.tree-tabl e-vi ew st andar d- di spl ay-node > .virtual -fl ow >
.scroll-bar:vertical .increnent-arrow {

-fx-pref-width: 0.0;

}

/*

* W& do not need the horizontal scrollbar of the table. W are styling it
* away by setting its preferred width to zero. W are replacing the
scrol | bar

* with our own scrollbar |ocated hidden inside a H ddenSi desPane i nstance.
The

* scrollbar only becones visible if the user noves the nbuse cursor close
to

* the bottom edge of the table.

*/

.gantt-tree-table-view > .virtual -flow > .scroll-bar: horizontal,
.gantt-tree-table-view > .virtual-flow > .scroll-bar: horizontal

.decrenent -arrow ,

.gantt-tree-table-view > .virtual -flow > .scroll-bar: horizont al
.increment-arrow {

-fx-pref-height: 0.0;

}

/*
* W like to center the columm header text and use a normal font weight
* for it.
*/
.gantt-tree-tabl e-vi ew . col um- header .Iabel {
-fx-alignnent: center;

}

.gantt-tree-tabl e-vi ew . col um-header, .gantt-tree-table-view .filler {
-fx-font-wei ght: nornal

}

/*

* Alternating row colors inside the table. To nmake this work we have to
* also set styles on tree table row cells. Quite nasty if you ask ne.

*/

.tree-table-rowcell:even {

- f x- background-col or: -tree-tabl e-row background-even;

}

.tree-table-rowcell:odd {
- fx- background-col or: -tree-tabl e-row background- odd;

}

.gantt-tree-table-view > .virtual-flow > .clipped-contai ner > .sheet >
.tree-table-rowcell:selected {
- fx- background-col or: -fx-selection-bar-non-focused,;

}

.gantt-tree-tabl e-vi ew focused > .virtual -fl ow > . cli pped-contai ner >
.Sheet > .tree-table-rowcell:selected {
- f x- background-col or: -fx-sel ection-bar

}

/*

* W& are adding depth to the table content and graphics content by placing
* a shadow bel ow the table header and the tineline. This gives the

i mpr essi on

* that the content of both really does slide "behind" these header
control s.

*/

. vi ewport - shadow {

-fx-pref-hei ght: 6;

- fx- background-color: linear-gradient(fromO0%0%to 0% 100%
rgba(o0,0,0,.2), rgba(0,0,0,0));
}
/*

* The style used by the buttons inside the layers control (layer up, down,
delete).

*/

.l ayers-navi gate-button {
- f x- background-i nsets: O;
-fx-border-insets: null
- fx- background-col or: transparent;
-fx- paddi ng: O;

}

/*

* The col um headers inside the |ayers control

*/

.l ayers-tabl e- header ({

-fx-padding: 0 0 5 0;

-fx-text-fill: gray;

-fx-font-weight: bold;

-fx-alignnent: center;

-fx-border-color: transparent transparent |ightgray transparent;

}

/*
* The bl ank area on top of the graphics view that becones visible
* for Gantt charts in the mddle or last position in a nmulti Gantt
* chart container context.
*/
. graphi c-vi ew header {
- f x- background-col or: -fx-body-col or;
-fx-border-col or:
derive(-fx-base, 80%
linear-gradient(to bottom derive(-fx-base, 80% 20%
derive(-fx-base, -10% 90%
derive(-fx-base, 10%
|inear-gradient(to bottom derive(-fx-base, 80% 20%
derive(-fx-base,-10%9 90%,
/* Quter border: */
transparent -fx-box-border -fx-box-border transparent;
-fx-border-insets: 0110, 000 O;
-fx-border-w dth: 0.083333em 0.083333em 0. 083333em 0, 0.083333em
0. 083333em 0. 083333em
-fx-pref-height: Opx;
}

/*

* The container "around" the tineline and the graphics area.

*/

.timeline-graphics-wapper {
-f x-background-col or: -fx-box-border, -fx-control-inner-background;
-f x- background-insets: 0, 1;
-fx- paddi ng: 1;

}

.tinmeline-graphi cs-w apper:focused {

- f x- background-col or: -fx-faint-focus-color, -fx-focus-col or
-fx-control -i nner-background;

- fx- background-i nsets: -2, -0.3, 1;
}

/*

* The tine slider is used to scroll the tineline to the left or right.
* |t becones visible when the user noves the nopuse cursor close to the
* bottom edge of the graphics view

*/

.time-slider {

-fx-opacity: .75;
- f x- background-radi us: 0. O0;
-fx-border-col or: null
-fx-border-radius: 0.O0;

}

.time-slider:horizontal ({

-fx-background-color: linear-gradient(to bottom derive(-fx-base,-3%
derive(-fx-base,5% 50% derive(-fx-base,-3%);

-fx-pref-height: 16.0;

- fx- max- hei ght: 16.0;
}

.time-slider > * > .slider {
-fx-showtick-marks: false

}

.time-slider > * > .slider > .track {
- f x-background-col or: transparent;

}

.time-slider > * > .slider > .thunmb {
-fx-pref-wi dth: 100;
- f x-background-col or: -fx-outer-border, -fx-inner-border
- f x- body-col or;
- f x- background-i nsets: 2

, 3.0, 4.0;
- f x- background-radius: 3 2.0, 1.0

.0
.0 ;

}

.time-slider > * > .slider:focused > .thunb {

}

.time-slider > * > _adjust-plus {
-fx-pref-width: O;
-fx-shape: null

}

.time-slider > * > _adjust-mnus {
-fx-pref-width: O;
-fx-shape: null

}

/*
* The styling of the [abels showing the zone ID of a row
*/
. zonel dLabel {
-fx-padding: 4 5 4 5;
- f x- backgr ound- col or:
transparent,
rgba(o0, 0, 0, 0. 05),
| i near - gradi ent (#dcca8a, #c7a740),
I'i near-gradi ent (#f 9f 2d6 0% #f 4eSbc 20% #e6c75d 80% #e2c045
100% ,

| i near - gradi ent (#f 6ebbe, #e6c34d);
-fx- background-insets: 0,2, 3,4,5;
- f x- background-radi us: 4;
-fx-font-famly: "Helvetica";
-fx-font-size: 10px;
-fx-text-fill: #311c09;
-fx-effect: innershadow(three-pass-box , rgba(0,0,0,0.1) , 2, 0.0,

...

...

/*
* graphics.css file of FlexGanttFX
*
* Copyright 2014 Dirk Lenmermann Software & Consulting
*/
.root {
/* The col or used for drawi ng |inks between activities */
-fl exganttfx-1link-color: rosybrown;

* W need to adjust the list viewso it stays in synch with the tree
* table view W also have to renpve all padding fromthe list cells
* and assign a default row height that is equal to the default row
* hei ght defined in Row java.
*/

dist-view {
-fx- paddi ng: 0.0;

}

.list-view focused {
-fx- paddi ng: 0.0;
}

dist-cell {
-fx-paddi ng: 0.0;
-fx-pref-height: 24px;
}

.list-cell-row pane {
- f x- background-col or: transparent;

}

/*
* The single row pane, vbox row pane, and the splitpane row pane all have
* to set a background color. The list view version doesn't need to as it
uses
* the colors of the rows.
*/
. si ngl e-row pane,
. vbox-r ow pane,
. splitpane-row pane {
- f x- background-col or: white;

}

. vbox-r ow pane {

-fx-border-color: transparent transparent, gray, transparent;
-fx-border-wi dth: .25px;
}

/*

* The lasso is used to select nmultiple activities at once.
*/

.activities-lasso {

-fx-stroke: red;

-fx-fill: rgba(255.0,0.0,0.0,0.2);
}
/*

* The cursor |ines.

*/

. hori zontal -cursor,
.vertical -cursor {
-fx-stroke: olivedrab
-fx-stroke-width: 1.5;

}

.horizontal -cursor-indicator {
-fx-background-col or: green, white;
- f x- background-i nsets: 0, 2;
- f x- background-radi us: 5px;
- f x- paddi ng: 5px;
-fx-pref-width: 8;
-fx-pref-height: 8;

}

/*

* Marked Tinme Interval
*/

.marked-tine-line {
-fx-stroke-wi dth: 1.5px;
-fx-stroke: cornfl owerbl ue;
-fx-stroke-dash-array: 4 3;

}

.marked-start-tine-line {
}

. mar ked-end-time-1line {

}

/*

* Row controls button are shown when the nouse hovers over a row that can
be

* edited (flipped around).

*/
.rowcontrol s-button {

-fx-padding: 59 7 7;

- fx- background-insets: 0 4 2 2;

- f x- background-col or: rgba(0,0,0,.5);
- f x- background-radi us: O0;
-fx-text-fill: white;

-fx-font-size: 8;

-fx-font-wei ght: bold;

}

.rowcontrol s-button: hover,

.row control s-button: focused {
-fx-padding: 59 7 7;
-fx-background-insets: 0 4 2 2;
- f x- background-col or: rgba(0,0,0,.6);
- f x- background-radi us: O0;
-fx-text-fill: white;
-fx-font-size: 8;
-fx-font-wei ght: bold;

}

. row control s-button: pressed,
.rowcontrol s-button: sel ected {
-fx-padding: 59 7 7;
- fx- background-insets: 0 4 2 2;
- f x- background-col or: rgbha(0,0,0,.7);
- f x- background-radi us: O0;
-fx-text-fill: white;
-fx-font-size: 8;
-fx-font-wei ght: bold;
}

.virtual -grid-popover > .border ({
- fx- paddi ng: 10px;
}

.grid-button,
.grid-button: hover,
.grid-button:sel ected,
.grid-button:focused,
.grid-button: pressed {
-fx-font-weight: bold;
-fx-font-size: 10px;
-fx-alignnent: center-left;
-fx-1 abel -padding: 2 0 2 O;
- f x- background-radi us: 2;
- f x- background-i nsets: 4;

}

.grid-button {
- f x- background-col or: white;

}

.grid-button: hover {
- f x-background-col or: |ightgray;

}

.grid-button: pressed {

- f x- background-col or: gray;
-fx-text-fill: white;

}

.grid-button: sel ected {

- f x- background-col or: bl ack;
-fx-text-fill: white;

}

/*

* The styles used for the activity links. Alink consists of a path and
t wo

* regions (one for the start handle, one for the end handle).

*/

ink {

-fx-stroke-wi dth: 1.5px;

-fx-stroke: -flexganttfx-Iink-color

}

.link-start-handl e {

-fx-border-col or: derive(-flexganttfx-Iink-color, -20%;
-fx-background-col or: derive(-flexganttfx-link-color, -20%;
-fx-pref-w dth: 6px;

-fx-pref-height: 6px;

-fx-translate-y: -3px;

-fx-shape: "M 100, 100 m-75, 0 a 75,75 0 1,0 150,0 a 75,75 0 1,0
-150, 0;

-fx-scal e-shape: true

}

. 1i nk-end-handl e {

-fx-background-col or: derive(-flexganttfx-link-color, -20%;
-fx-pref-w dth: 8px;

-fx- pref-height: 8px;

-fx-transl ate-x: -8px;

-fx-translate-y: -4px;

-fx-shape: "M0O O L 100 50 L 0 100 L 0 0 Z";

-fx-scal e-shape: true

}

.link-start-handle-rotated {
-fx-transl ate-x: -6px;

}

.link-end-handl e-rotated {
-fx-transl ate-x: Opx;

}

/*

* The lens for the graphics area. Experinental. Feature planned for 1.2
rel ease earliest.

*/

. graphi cs-lens {

-fx-effect: innershadow gaussi an, gray, 10, .1, 0, 0);
-fx-border-col or: gray;

-fx-border-insets: 8px;

. graphi cs-1 ens- popover {
-fx-border-col or: red;

...

/*
* timeline.css file of FlexGanttFX
*

* Copyright 2014 Dirk Lenmermann Software & Consulting
*/

/*
* timeline-first/mddle/last are styles that are applied depending on the
* position of the Gantt chart in a nmulti Gantt chart context, e.g. the
* Dual Gantt Chart Contai ner or the MiltipleGanttChart Contai ner
*/
.timeline {
- f x- background-col or: -fx-body-col or;
/*
* The pref height of the tinmeline has to match the pref hei ght
* of the table columm headers, so that they
*/
-fx-pref-hei ght: 60px;
}

.timeline-first {
}
.tineline-mddle,
.timeline-last {

/*
* The pref height of the tinmeline is smaller if the tineline
* is used for the second, third, ... chart in a multi Gantt chart
* context.
*/
-fx- pref-height: 24px;
}
/*
* The | asso used for selecting time intervals.
*/

.tinmeline-lasso {

/* sem -transparent rectangle, blue by default (nodena.css) */
-fx-opacity: 60%

- f x-background-col or: -fx-accent;

...

6. Logging

® Introduction
® Logging Domains
® Configuration File

Introduction

FlexGanttFX has some built in logging support using the standard java.util.logging framework. Several logging domains are defined in the class c
om.flexganttfx.core.LoggingDomain. The following table lists the available domains.

Logging Domains
Domain Description

CONFIG Anything related to the configuration of the Gantt chart control. For example: the renderers that are being registered for
different activity types.

DND Displays everything related to a drag and drop operation (native drag and drop / platform provided drag and drop).
EDITING Reports changes to the start time, end time, percentage complete, chart value, of an activity.

EVENTS Informs about activities related to events: registered listeners, events that are being sent.

NAVIGATION Scrolling, zooming.

PERFORMANCE Informs about performance related aspects.
RENDERING Anything relate to rendering rows or activities.

REPOSITORY Lists repository operations.

Configuration File

The following file can be used to configure logging for FlexGanttFX.

To use this property file add the followi ng command |ine argunent:
-Djava. util.logging.config.file=${project_loc}/|og.properties
Specify the handlers to create in the root |ogger

(all loggers are children of the root |ogger)

The following creates two handl ers

handlers = java. util .l oggi ng. Consol eHandl er
java.util.logging. Fil eHandl er

handl ers = java. util .l oggi ng. Consol eHandl er

Set the default | ogging level for the root |ogger
.level = INFO

Set the default |ogging |evel for new Consol eHandl er instances
java.util.logging. Consol eHandl er. | evel = OFF

Set the default |ogging |level for new Fil eHandl er instances
java.util.logging. Fil eHandl er.level = ALL

Set the default formatter for new Consol eHandl er instances
java.util.logging. Consol eHandl er.formatter =

com fl exganttfx. core. Loggi ngFor matter

Fl exGantt FX | oggi ng donai ns

com fl exganttfx.config.level = OFF
com fl exganttfx. performance. | evel = CFF
comflexganttfx.repository.level = OFF
comflexganttfx.editing.level = OFF
com fl exganttfx. navigation.|evel = OFF
com fl exganttfx.rendering.level = OFF
com fl exganttfx. dnd. | evel = COFF

com fl exganttfx. events.level = OFF

	FlexGanttFX Developer Manual
	1. Installation
	2. Tutorial
	3. Controls
	3.1 GanttChart
	3.1.1 Model
	3.1.2 Detail Node
	3.1.3 Display Mode
	3.1.4 Graphics Header
	3.1.5 Row Header
	3.1.6 Property Sheet
	3.1.7 Other Features

	3.2 MultiGanttChartContainer
	3.3 DualGanttChartContainer
	3.4 QuadGanttChartContainer
	3.5 GraphicsBase
	3.4.1 System Layers
	3.4.2 Drag & Drop
	3.4.3 Event Handling
	3.4.4 Activity Editing
	3.4.5 Row Editing
	3.4.6 Activity Rendering
	3.4.7 Row Rendering
	3.4.8 Context Menu

	3.6 Timeline
	3.5.1 Timeline Model
	3.5.2 Time Tracker

	3.7 Dateline
	3.6.1 Dateline Model

	3.8 Eventline

	4. Model
	4.1 Activity
	4.1.1 ChartActivity
	4.1.2 CompletableActivity
	4.1.3 HighLowChartActivity

	4.2 ActivityRef
	4.3 ActivityLink
	4.4 ActivityRepository
	4.4.1 IntervalTreeActivityRepository
	4.4.2 ListActivityRepository

	4.5 Row
	4.6 Layer
	4.7 LinesManager
	4.8 Layout
	4.8.1 Gantt Layout
	4.8.2 Agenda Layout
	4.8.3 Chart Layout

	4.9 Calendar

	5. Styling (CSS)
	dateline.css
	eventline.css
	gantt.css
	graphics.css
	timeline.css

	6. Logging

